Skip to main content
Log in

Identification and characterization of a LTR retrotransposon from the genome of Cyprinus carpio var. Jian

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A Ty3/gypsy-retrotransposon-type transposon was found in the genome of the Jian carp (Cyprinus carpio var. Jian) in a previous study (unpublished), and was designated a JRE retrotransposon (Jian retrotransposon). The full-length JRE retrotransposon is 5126 bp, which includes two long terminal repeats of 470 bp at the 5′ end and 453 bp at the 3′ end, and two open reading frames between them: 4203 bp encoding the group-specific antigen (GAG) and polyprotein (POL). The pol gene has a typical Ty3/gypsy retrotransposon structure, and the gene order is protease, reverse transcriptase, RNase H, and integrase (PR–RT–RH–IN). A phylogenetic analysis of the pol gene showed that it has similarities of 40.7, 40, and 32.8 %, to retrotransposons of Azumapecten farreri, Mizuhopecten yessoensis, and Xiphophorus maculatus, respectively. Therefore, JRE might belong to the JULE retrotransposon family. The copy number of the JRE transposon in the genome of the Jian carp is 124, determined with real-time quantitative PCR. The mRNA of the JRE retrotransposon is expressed in five Jian carp tissues, the liver, kidney, blood, muscle, and gonad, and slightly higher in the kidney and liver than in the other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LTR:

Long terminal repeat

ORF:

Open reading frame

GAG:

Group-specific antigen

POL:

Polyprotein

PR:

Protease

RT:

Reverse transriptase

RH:

RNase H

IN:

Integrase

IR:

Inverted repeat

PBS:

Primer binding site

PPT:

Polypurine tract

UGW:

Universal Genome Walker™

AFLP:

Amplified fragment length polymorphism

NJ:

Neighbor-joining

RT-PCR:

Reverse transcriptase-polymerase chain reaction

PTGS:

Post-transcriptional gene silencing

JRE:

Cyprinus carpio var. Jian retrotransposon

References

  • Amsterdam A, Lin S, Hopkins N (1995) The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev Biol 171:123–129. doi:10.1006/dbio.1995.1265

    Article  CAS  PubMed  Google Scholar 

  • Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, Missiakas DM (2004) Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci USA 101:12312–12317. doi:10.1073/pnas.0404728101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belyayev A, Raskina O, Nevo E (2005) Variability of the chromosomal distribution of Ty3-gypsy retrotransposons in the populations of two wild Triticeae species. Cytogenet Genome Res 109:43–49. doi:10.1159/000082380

    Article  CAS  PubMed  Google Scholar 

  • Benachenhou F, Sperber GO, Bongcam-Rudloff E, Andersson G, Boeke JD, Blomberg J (2013) Conserved structure and inferred evolutionary history of long terminal repeats (LTRs). Mobile DNA 4:5. doi:10.1186/1759-8753-4-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt J, Veith AM, Volff JN (2005) A family of neofunctionalized Ty3/gypsy retrotransposon genes in mammalian genomes. Cytogenet Genome Res 110:307–317. doi:10.1159/000084963

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Ding W, Jia Y, Wu T (2006) Analysis of chromosome karyotypes of Oreochromis aurea, Siniperca chuatsi and their offspring. J Agric Biotechnol 14:187–190

    Google Scholar 

  • Capy P, Vitalis R, Langin T, Higuet D, Bazin C (1996) Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J Mol Evol 42:359–368

    Article  CAS  PubMed  Google Scholar 

  • Chavanne F, Zhang DX, Liaud MF, Cerff R (1998) Structure and evolution of Cyclops: a novel giant retrotransposon of the Ty3/Gypsy family highly amplified in pea and other legume species. Plant Mol Biol 37:363–375

    Article  CAS  PubMed  Google Scholar 

  • Coates BS, Fraser LM, French B, Sappington TW (2014) Proliferation and copy number variation of BEL-like long terminal repeat retrotransposons within the Diabrotica virgifera virgifera genome. Gene 534:362–370

    Article  CAS  PubMed  Google Scholar 

  • Duvernell DD, Turner BJ (1998) Swimmer 1, a new low-copy-number LINE family in teleost genomes with sequence similarity to mammalian L1. Mol Biol Evol 15:1791–1793

    Article  CAS  PubMed  Google Scholar 

  • Friesen N, Brandes A, Heslop-Harrison JS (2001) Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol 18:1176–1188

    Article  CAS  PubMed  Google Scholar 

  • Koga A, Inagaki H, Bessho Y, Hori H (1995) Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes. MGG 249:400–405

    CAS  PubMed  Google Scholar 

  • Kovalchuk A, Senam S, Mauersberger S, Barth G (2005) Tyl6, a novel Ty3/gypsy-like retrotransposon in the genome of the dimorphic fungus Yarrowia lipolytica. Yeast 22:979–991. doi:10.1002/yea.1287

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532. doi:10.1146/annurev.genet.33.1.479

    Article  CAS  PubMed  Google Scholar 

  • Laha T, Loukas A, Smyth DJ, Copeland CS, Brindley PJ (2004) The fugitive LTR retrotransposon from the genome of the human blood fluke, Schistosoma mansoni. Int J Parasitol 34:1365–1375. doi:10.1016/j.ijpara.2004.08.007

    Article  CAS  PubMed  Google Scholar 

  • Lee SI, Kim JH, Park KC, Kim NS (2015) LTR-retrotransposons and inter-retrotransposon amplified polymorphism (IRAP) analysis in Lilium species. Genetica 143:343–352. doi:10.1007/s10709-015-9833-6

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Chen SY, Zheng XW, Zhu LH (2000) Identification and chromosomal localization of a transcriptionally active retrotransposon of Ty3-gypsy type in rice. Genome 43:404–408

    Article  CAS  PubMed  Google Scholar 

  • Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73:5186–5190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mashanov VS, Zueva OR, Garcia-Arraras JE (2012) Retrotransposons in animal regeneration: overlooked components of the regenerative machinery? Mob Genet Elements 2:244–247. doi:10.4161/mge.22644

    Article  PubMed  PubMed Central  Google Scholar 

  • Mroczek RJ, Dawe RK (2003) Distribution of retroelements in centromeres and neocentromeres of maize. Genetics 165:809–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayashiki H et al (2001) Pyret, a Ty3/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. Nucleic Acids Res 29:4106–4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearl LH, Taylor WR (1987) A structural model for the retroviral proteases. Nature 329:351–354. doi:10.1038/329351a0

    Article  CAS  PubMed  Google Scholar 

  • Poulter R, Butler M (1998) A retrotransposon family from the pufferfish (fugu) Fugu rubripes. Gene 215:241–249

    Article  CAS  PubMed  Google Scholar 

  • Purugganan MD, Wessler SR (1994) Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon. Proc Natl Acad Sci USA 91:11674–11678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SanMiguel P et al (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  CAS  PubMed  Google Scholar 

  • Segal D, Cherbas L, Cherbas P (1996) Genetic transformation of Drosophila cells in culture by P element-mediated transposition. Somat Cell Mol Genet 22:159–165

    Article  CAS  PubMed  Google Scholar 

  • Smyth DR, Kalitsis P, Joseph JL, Sentry JW (1989) Plant retrotransposon from Lilium henryi is related to Ty3 of yeast and the gypsy group of Drosophila. Proc Natl Acad Sci USA 86:5015–5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer MS, Britten RJ (1993) Phylogenetic relationships of reverse transcriptase and RNase H sequences and aspects of genome structure in the gypsy group of retrotransposons. Mol Biol Evol 10:1370–1379

    CAS  PubMed  Google Scholar 

  • Springer MS, Davidson EH, Britten RJ (1991) Retroviral-like element in a marine invertebrate. Proc Natl Acad Sci USA 88:8401–8404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsutsumi M, Imai S, Kyono-Hamaguchi Y, Hamaguchi S, Koga A, Hori H (2006) Color reversion of the albino medaka fish associated with spontaneous somatic excision of the Tol-1 transposable element from the tyrosinase gene. Pigment Cell Res 19:243–247

    Article  CAS  PubMed  Google Scholar 

  • Volff J, Korting C, Schartl M (2001a) Ty3/Gypsy retrotransposon fossils in mammalian genomes: did they evolve into new cellular functions? Mol Biol Evol 18:266–270

    Article  CAS  PubMed  Google Scholar 

  • Volff JN et al (2001b) Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag family. Mol Biol Evol 18:101–111

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Bradley A, Huang Y (2009) A piggyBac transposon-based genome-wide library of insertionally mutated Blm-deficient murine ES cells. Genome Res 19:667–673. doi:10.1101/gr.085621.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Ji P, Xu P, Sun X (2011) Identification and characterization of a novel Tcl—like transposon in the Cyprinus carpio genome. J Fish Sci China 18:1392–1398

    Google Scholar 

  • Yano CF, Bertollo LA, Molina WF, Liehr T, Cioffi Mde B (2014) Genomic organization of repetitive DNAs and its implications for male karyotype and the neo-Y chromosome differentiation in Erythrinus erythrinus (Characiformes, Erythrinidae). Comp Cytogenet 8:139–151. doi:10.3897/CompCytogen.v8i2.7597

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Sun X (2007) Study on selective breeding in new strain of Cyprihus carpio var. Jiah. J Fish China 31:287–292

    Google Scholar 

  • Zhu P, Oudemans PV (2000) A long terminal repeat retrotransposon Cgret from the phytopathogenic fungus Colletotrichum gloeosporioides on cranberry. Curr Genet 38:241–247

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Wang J, Gong Y (2001) Genetic improvement of Jian carp, Cyprinus carp io var. Jian. J Fish China 8:7–9

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (31200918), and the Natural Science Foundation of Jiangsu Province (BK2011184).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuwen Bing or Weidong Ding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Yin, G., Cao, Z. et al. Identification and characterization of a LTR retrotransposon from the genome of Cyprinus carpio var. Jian. Genetica 144, 325–333 (2016). https://doi.org/10.1007/s10709-016-9901-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-016-9901-6

Keywords

Navigation