Skip to main content
Log in

A single major QTL controls expression of larval Cry1F resistance trait in Ostrinia nubilalis (Lepidoptera: Crambidae) and is independent of midgut receptor genes

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae), is an introduced crop pest in North America that causes major damage to corn and reduces yield of food, feed, and biofuel materials. The Cry1F toxin from Bacillus thuringiensis (Bt) expressed in transgenic hybrid corn is highly toxic to O. nubilalis larvae and effective in minimizing feeding damage. A laboratory colony of O. nubilalis was selected for high levels of Cry1F resistance (>12,000-fold compared to susceptible larvae) and is capable of survival on transgenic hybrid corn. Genetic linkage maps with segregating AFLP markers show that the Cry1F resistance trait is controlled by a single quantitative trait locus (QTL) on linkage group 12. The map position of single nucleotide polymorphism (SNP) markers indicated that midgut Bt toxin-receptor genes, alkaline phosphatase, aminopeptidase N, and cadherin, are not linked with the Cry1F QTL. Evidence suggests that genes within this genome interval may give rise to a novel Bt toxin resistance trait for Lepidoptera that appears independent of known receptor-based mechanisms of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Archer TL, Schuster G, Patrick C, Cronholm G, Bynum ED, Morrison WP (2000) Whorl and stalk damage by European and southwestern corn borers to four events of Bacillus thuringiensis transgenic maize. Crop Protect 19:181–190

    Article  Google Scholar 

  • Baxter S, Zhao JZ, Gahan LJ, Shelton AM, Tabashnik BE, Heckel DG (2005) Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella. Insect Mol Biol 14:327–334

    Article  PubMed  CAS  Google Scholar 

  • Baxter S, Zhao JZ, Shelton AM, Vogel H, Heckel DG (2008) Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth Plutella xylostella. Insect Biochem Mol Biol 38:125–135

    Article  PubMed  CAS  Google Scholar 

  • Beldade P, Saenko SV, Pul N, Long AD (2009) A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genetics 5:e1000366

    Article  PubMed  Google Scholar 

  • Bolin PC, Hutchison WD, Andow DA (1999) Selection and characterization of Bt resistance in the European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae). J Econ Entomol 92:1021–1031

    CAS  Google Scholar 

  • Casida JE, Quistad GB (2004) Why insecticides are more toxic to insects than people: the unique toxicology of insects. J Pestic Sci 29:81–86

    Article  CAS  Google Scholar 

  • Chang WXZ, Gahan LJ, Tabashnik BE, Heckel DG (1999) A new aminopeptidase from diamondback moth provides evidence for a gene duplication event in Lepidoptera. Insect Mol Biol 8:171–177

    Article  PubMed  CAS  Google Scholar 

  • Chaufaux J, Seguin M, Swanson JJ, Bourguet D, Siegfried BD (2001) Chronic exposure of the European corn borer (Lepidoptera: Crambidae) to Cry1Ab Bacillus thuringiensis toxin. J Econ Entomol 94:1564–1570

    Article  PubMed  CAS  Google Scholar 

  • Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2005) Sequence variation in the cadherin gene of Ostrinia nubilalis: a tool for field monitoring. Insect Biochem Mol Biol 35:129–139

    Article  PubMed  CAS  Google Scholar 

  • Coates BS, Sumerford DV, Lewis LC (2007) A β-1, 3-galactosyltransferase and brainiac/bre5 homolog expressed in the midgut did not contribute to a Cry1Ab toxin resistance trait in Ostrinia nubilalis. Insect Biochem Mol Biol 37:346–355

    Article  PubMed  CAS  Google Scholar 

  • Coates BS, Sumerford DV, Lewis LC (2008a) Segregation of Ostrinia nubilalis aminopeptidase 1 (APN1), cadherin, and bre5-like alleles from a Cry1Ab resistant colony are not associated with F2 larval weights when fed on toxin-containing diet. J Insect Sci 8:21

    Article  Google Scholar 

  • Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2008b) ) Mining an Ostrinia nubilalis midgut expressed sequence tag (EST) library for candidate genes and single nucleotide polymorphisms (SNPs). Insect Mol Biol 17:607–621

    Article  PubMed  CAS  Google Scholar 

  • Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2009) Repetitive genomic elements in a European corn borer, Ostrinia nubilalis, bacterial artificial chromosome library were indicated by bacterial artificial chromosome end sequencing and development of sequence tag site markers: implications for lepidopteran genomic research. Genome 52:57–67

    Article  PubMed  CAS  Google Scholar 

  • Crava CM, Bel Y, Lee SF, Manachini B, Heckel DG, Escriche B (2010) Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hübner) and Bombyx mori (L.): Sequences, mapping and expression. Insect Biochem Mol Biol 40:506–515

    Article  PubMed  CAS  Google Scholar 

  • Crespo AB, Spencer T, Alves AP, Hellmich RL, Blankenship EE, Magalhaes LC, Siegfried BD (2009) On-plant survival and inheritance of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. Pest Manag Sci 10:1071–1081

    Article  Google Scholar 

  • Dopman EB, Bogdanowicz SM, Harrison RG (2004) Genetic mapping of sexual isolation between E and Z pheromone strains of the European corn borer (Ostrinia nubilalis). Genetics 167:301–309

    Article  PubMed  CAS  Google Scholar 

  • Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    Article  PubMed  Google Scholar 

  • ffrench-Constant RH, Steichen J, Rocheleau TA, Aronstein K, Roush RT (1993) A single amino acid substitution in a γ-aminobutyric acid subtype a receptor locus associated with cyclodiene insecticide resistance in Drosophila populations. Proc Natl Acad Sci USA 90:1957–1961

    Article  PubMed  CAS  Google Scholar 

  • Flannagan RD, Yo CG, Mathis JP, Meyer TE, Shi X, Siqueira HAA, Siegfried BD (2005) Identification, cloning and expression of a Cry1Ab cadherin receptor from European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae). Insect Mol Biol 35:33–40

    Article  CAS  Google Scholar 

  • Francis BR, Bulla LA Jr (1997) Further characterization of BT-R1, the cadherin-like receptor for Cry1Ab toxin in tobacco hornworm (Manduca sexta) midguts. Insect Biochem Mol Biol 27:541–550

    Article  PubMed  CAS  Google Scholar 

  • Gahan LJ, Gould F, Heckel DG (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293:857–860

    Article  PubMed  CAS  Google Scholar 

  • Gahan LJ, Ma YT, Coble MLM, Gould F, Moar WJ, Heckel DG (2005) Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J Econ Entomol 98:1357–1368

    Article  PubMed  CAS  Google Scholar 

  • Georghiou GP, Lagunes-Tejeda A (1991) The occurrence of resistance to pesticides in arthropods. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Glasser JA, Matten SR (2003) Sustainability of insect resistance management strategies for transgenic Bt corn. Biotechnol Adv 22:45–69

    Article  Google Scholar 

  • Göring HH, Terwilliger JD (2000) Linkage analysis in the presence of Errors II: marker-locus genotyping errors modeled with hypercomplex recombination fractions. Am J Hum Genet 66:1107–1118

    Article  PubMed  Google Scholar 

  • Griffitts JS, Aroian RV (2005) Many roads to resistance: how invertebrates adapt to Bt toxins. Bioessays 27:614–624

    Article  PubMed  Google Scholar 

  • Griffitts JS, Whitacre JL, Stevens DE, Aroian RV (2001) Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293:860–864

    Article  PubMed  CAS  Google Scholar 

  • Guthrie WD, Dollinger EJ, Stetson JF (1965) Chromosome studies of the European corn borer, smartweed borer, and lotis borer. Annals Entomol Soc Am 58:100–105

    Google Scholar 

  • Harshman LG, Hoffmann AA (2000) Laboratory selection experiments using Drosophila: what do they really tell us? Trends Ecol Evol 15:32–36

    Article  PubMed  Google Scholar 

  • Heckel DG, Gahan LJ, Daly JC, Trowell S (1998) A genomic approach to understanding Heliothis and Helicoverpa resistance to chemical and biological insecticides. Phil Trans R Soc Lond B 353:1713–1722

    Article  CAS  Google Scholar 

  • Heckel DG, Gahan LJ, Liu YB, Tabashnik BE (1999) Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphastic linkage analysis. Proc Natl Acad Sci USA 96:8373–8377

    Article  PubMed  CAS  Google Scholar 

  • Heckel DG, Gahan LJ, Baxter SW, Zhao JZ, Shelton AM, Gould F, Tabashnik BE (2007) The diversity of Bt resistance genes in species of Lepidoptera. J Invert Pathol 95:192–197

    Article  CAS  Google Scholar 

  • Herrero S, Gechev T, Bakker PL, Moar WJ, de Maagd RA (2005) Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four aminopeptidase N genes. BMC Genomics 6:96

    Article  PubMed  Google Scholar 

  • Hua G, Masson L, Jurat-Fuentes JL, Schwab G, Adang MJ (2001) Binding analyses of Bacillus thuringiensis Cry-endotoxins using brush border membrane vesicles of Ostrinia nubilalis. Appl Environ Microbiol 67:872–879

    Article  PubMed  CAS  Google Scholar 

  • Huang F, Higgins RA, Buschman LT (1997) Baseline susceptibility and changes in susceptibility to Bacillus thuringiensis subsp. kurstaki under selection pressure in European corn borer (Lepidoptera: Pyralidae). J Econ Entomol 90:1137–1143

    Google Scholar 

  • Janmaat AF, Myers J (2003) Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc R Soc Lond B 270:2263–2270

    Article  Google Scholar 

  • Jurat-Fuentes JL, Adang MJ (2004) Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Helitothis virescens larvae. Eur J Biochem 271:3127–3135

    Article  PubMed  CAS  Google Scholar 

  • Jurat-Fuentes JL, Gould FL, Adang MJ (2002) Altered Glycosylation of 63- and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation, and increased resistance to Bacillus thuringiensis Cry1 toxins. Appl Environ Microbiol 68:5711–5717

    Article  PubMed  CAS  Google Scholar 

  • Knight PJK, Crickmore N, Ellar DJ (1994) The receptor for Bacillus thuringiensis Cry1A(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase-N. Mol Microbiol 11:429–436

    Article  PubMed  CAS  Google Scholar 

  • Knowles BH, Knight PJK, Ellar DJ (1991) N-acetylgalactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis. Proc R Soc Lond Biol 245:31–35

    Article  CAS  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghigi MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola S (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11:194–200

    Article  CAS  Google Scholar 

  • Lambert N, Peferoen M (1992) Insecticidal promise of Bacillus thuringiensis: Facts and mysteries about a successful biopesticide. Bioscience 42:112–122

    Article  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing Genetic Maps with MAPMAKER/EXP 3.0. 3rd edn. Whitehead Institute Technical Report

  • Matten SR, Head GP, Quemada HD (2008) How governmental regulation can help or hinder the integration of Bt crops into IPM programs. In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, New York, pp 27–39

    Chapter  Google Scholar 

  • McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229:193–194

    Article  PubMed  CAS  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  PubMed  CAS  Google Scholar 

  • Miao XX, Xu SJ, Li MH, Li MW, Huang JH, Dia FY, Marino SW, Mills DR, Zeng PZ, Mita K, Jia SH, Zhang Y, Liu WB, Xiang H, Guo QH, Xu WY, Kong XY, Lin HX, Shi YZ, Lu G, Zhang X, Huang W et al (2005) Simple sequence repeat-based consensus linkage map of Bombyx mori. Proc Natl Acad Sci USA 102:16303–16308

    Article  PubMed  CAS  Google Scholar 

  • Morin S, Biggs RW, Sisterson MS, Shriver L, Ellers-Kirk C, Higginson D, Holley D, Gahan LJ, Heckel DG, Carrière Y, Dennehy TJ, Brown JK, Tabashnik BE (2003) Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci USA 100:5004–5009

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on nontarget organisms. Annu Rev Entomol 50:271–292

    Article  PubMed  Google Scholar 

  • Pereira EJG, Lang BA, Storer NP, Siegfried BD (2008a) Selection for Cry1F resistance in the European corn borer and cross resistance to other Cry toxins. Entomol Exper Appl 126:115–121

    Article  CAS  Google Scholar 

  • Pereira EJG, Storer NP, Siegfried BD (2008b) Inheritance of Cry1F resistance in laboratory-selected European corn borer and its survival on transgenic corn expressing the Cry1F toxin. Bull Entomol Res 98:621–629

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nature (Lond.) Biotechnol 24:63–71

    Article  CAS  Google Scholar 

  • Siqueira HAA, Gonzáles-Cabrera J, Ferré J, Flannagan R, Siegfried BD (2006) Analysis of Cry1Ab binding in resistant and susceptible strains of the European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Cramdidae). Appl Environ Microbiol 72:5318–5324

    Article  PubMed  CAS  Google Scholar 

  • Siqueria HAA, Moelenbeck DJ, Spencer TA, Siegfried BD (2004) Cross-resistance of Cry1Ab-selected Ostrinia nubilalis (Lepidoptera: Crambidae) to Bacillus thuringiensis endotoxins. J Econ Entomol 97:1049–1057

    Article  Google Scholar 

  • Tabashnik BE (2008) Delaying insect resistance to transgenic crops. Proc Natl Acad Sci USA 105:19029–19030

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE, Cushing NL, Finson N, Johnson MW (1990) Field Development of Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: Plutellidae). J Econ Entomol 83:1671–1676

    Google Scholar 

  • Tang K, Fu DJ, Julien D, Braun A, Cantor CR, Koster H (1999) Chip–based genotyping by mass spectrometry. Proc Natl Acad Sci USA 96:10016–10020

    Article  PubMed  CAS  Google Scholar 

  • Traut W (1977) A study of recombination, formation of chiasmata and synaptonemal complexes in female and male meiosis of Ephestia kuehniella (Lepidoptera). Genetica 47:135–142

    Article  Google Scholar 

  • Traut W, Marec F (1997) Sex chromosome differentiation in some species of Lepidoptera. Chromosome Res 5:283–291

    Article  PubMed  CAS  Google Scholar 

  • Urban T, Ricci S, Grange JD, Lacave R, Boudghene F, Breittmayer F, Languille O, Roland J, Bernaudin JF (1993) Detetion of c-Ki-ras mutation by PCR/RFLP analysis and diagnosis of pancreatic adenocarcinomas. J Natl Cancer Institute 85:2008–2012

    Article  CAS  Google Scholar 

  • Vadlamudi RK, Ji TH, Bulla LA (1993) A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis ssp. berliner. J Biol Chem 268:12334–12340

    PubMed  CAS  Google Scholar 

  • van Rensburg JBJ (2007) First field report of field resistance by the stem borer, Busseola fusca (Fuller) to transgenic maize. S Afr J Plant Soil 24:147–151

    Google Scholar 

  • Van Rie J, Jansens S, Hofte H, Degheele D, Van Mellaert H (1989) Specificity of Bacillus thuringiensis δ-endotoxins:importance of specific receptors on the brush border membrane of the midgut of target insects. Eur J Biochem 186:239–247

    Article  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Williamson MS, Martinez-Torrez D, Hick CA, Devonshire AL (1996) Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet 252:51–60

    Article  PubMed  CAS  Google Scholar 

  • Xie R, Zhuang M, Ross LS, Gomez I, Oltean DI, Bravo A, Soberon M, Gill SS (2005) Single amino acid mutations in the cadherin receptor from Heliothis virescens affect it toxin binding ability to Cry1A toxins. J Biol Chem 280:8416–8425

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Wang Z, Zhang J, He K, Ferry N, Gatehouse AMR (2010) Cross-resistance of Cry1Ab-selected Asian corn borer to other Cry toxins. J Appl Entomol 134:429–438

    Article  CAS  Google Scholar 

  • Yamamoto K, Narukawa J, Kadono-Okuda K, Nohata J, Sasanuma M, Suetsugu Y, Banno Y, Fujii H, Goldsmith MR, Mita K (2006) Construction of a single nucleotide polymorphism linkage map for the silkworm, Bombyx mori, based on bacterial artificial chromosome end sequences. Genetics 173:151–161

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Cheng H, Gao Y, Wang G, Liang G, Wu K (2009) Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Mol Biol 39:421–429

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was a joint contribution from the USDA, Agricultural Research Service (CRIS Project 3625-22000-017-00), the Iowa Agriculture and Home Economics Experiment Station, Ames, IA (Project 3543), and the University of Nebraska. Funding also was provided by a USDA, Biotechnology and Risk Assessment Grant (BRAG) “Quantifying risk factors for evolution of European corn borer resistance to Cry11F expressing corn hybrids: Contribution to a framework for managing insect resistance to transgenic crop” (2006-03697). This article reports the results of research only. Mention of a proprietary product does not constitute an endorsement or a recommendation by USDA, Iowa State University or the University of Nebraska for its use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad S. Coates.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coates, B.S., Sumerford, D.V., Lopez, M.D. et al. A single major QTL controls expression of larval Cry1F resistance trait in Ostrinia nubilalis (Lepidoptera: Crambidae) and is independent of midgut receptor genes. Genetica 139, 961–972 (2011). https://doi.org/10.1007/s10709-011-9590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-011-9590-0

Keywords

Navigation