Skip to main content
Log in

Mating positions and the evolution of asymmetric insect genitalia

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Genital asymmetry is a recurring phenomenon in insect morphology and current data suggest that it has arisen multiple times independently in several neopteran orders. Various explanations have been proposed, including space constraints, ecological constraints, sexual selection via antagonistic coevolution, and sexual selection via changed mating positions. Each of these hypotheses may best explain individual cases, but only the last seems to account for the large majority of insect genital asymmetries. Here I summarize the basic assumptions and evolutionary steps implied in this model and review the evidence for each of them. Several components of this scenario can be easily tested, for example by including genital asymmetries and mating positions in phylogenetic analyses. Others require in-depth analyses of the function of asymmetric genital structures, targeted comparative analyses (e.g., of taxa with sex-role reversal, taxa with reversal to symmetry, etc.), and of female genital neuroanatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahrens D (2005) A taxonomic review on the Serica (s.str.) MacLeay, 1819 species of Asian mainland (Coleoptera, Scarabaeidae, Sericini). Nova Suppl Entomol 18:1–163

    Google Scholar 

  • Alexander RD (1964) The evolution of mating behavior in arthropods. R entomol Soc London Symp 2:78–94

    Google Scholar 

  • Alexander RD, Otte D (1967) The evolution of genitalia and mating behavior in crickets (Gryllidae) and other Orthoptera. Misc Publ Mus Zool Univ Mich 133:1–62

    Google Scholar 

  • Asche M (1985) Zur Phylogenie der Delphacidae Leach, 1815 (Homoptera Cicadina Fulgoromorpha). Marburger entomol Publ 2(1):1–910

    Google Scholar 

  • Baunacke W (1912) Statische Sinnesorgane bei den Nepiden. Zool Jb Abt Anat Ontog Tiere 34:179–346 (pl. 10–13)

    Google Scholar 

  • Berthélemy C (1979) Accouplement, période d’incubation et premiers stades larvaires de Brachyptera braueri et de Perlodes microcephalus (Plecoptera). Ann Limnol 15:317–335

    Google Scholar 

  • Bickel DJ (1987) Babindellinae, a new subfamily of Dolichopodidae (Diptera) from Australia, with a description of symmetry in the dipteran male postabdomen. Entomol Scand 18:97–113

    Google Scholar 

  • Bornemissza GF (1966) Observations on the hunting and mating behaviour of two species of scorpion flies (Bittacidae: Mecoptera). Aust J Zool 14:371–382. doi:10.1071/ZO9660371

    Article  Google Scholar 

  • Bradler S (1999) The vomer of Timema Scudder, 1895 (Insecta: Phasmatodea) and its significance for phasmatodean phylogeny. Courier Forschungsinstitut Senckenberg 215:43–47

    Google Scholar 

  • Briceño RD, Eberhard WG (1995) The functional morphology of male cerci and associated characters in 13 species of tropical earwigs (Dermaptera: Forficulidae, Labiidae, Carcinophoridae, Pygidicranidae). Smithson Contrib Zool 555:1–64

    Google Scholar 

  • Brinck P (1957) Reproductive system and mating in Ephemeroptera. Opusc Entomol 22:1–37

    Google Scholar 

  • Carayon J (1977) Insémination extra-genitale traumatique. Traite Zool 8:351–390

    Google Scholar 

  • Carpenter FM (1936) Descriptions and records of Nearctic Mecoptera. Psyche 43:56–64

    Article  Google Scholar 

  • Cobben RH (1982) The hebrid fauna of the Ethiopian Kaffa Province, with considerations on species grouping (Hebridae, Heteroptera). Tijdschr Entomol 125:1–24

    Google Scholar 

  • Cook PP (1963) Mating behaviour of Psylla pyricola Forster (Hom. Psyllidae). Pan-Pac Entomol 39:175

    Google Scholar 

  • Cooper KW (1974) Sexual biology, chromosomes, development, life histories and parasites of Boreus, especially of B. notoperates, a southern Californian Boreus, II. (Mecoptera: Boreidae). Psyche 81:84–120

    Article  Google Scholar 

  • Crampton GC (1940) The mating habits of the winter mecopteron, Boreus brumalis Fitch. Psyche 47:125–128

    Google Scholar 

  • Davis NT, Usinger RL (1970) The biology and relationships of the Joppeicidae (Heteroptera). Ann Entomol Soc Am 63:577–586

    Google Scholar 

  • Despax R (1949) Ordre des éphéméroptères. Traite Zool 9:279–309

    Google Scholar 

  • Eberhard WG (1985) Sexual selection and animal genitalia. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Eberhard WG (1991) Copulatory courtship and cryptic female choice in insects. Biol Rev Camb Philos Soc 66:1–31. doi:10.1111/j.1469-185X.1991.tb01133.x

    Article  Google Scholar 

  • Eberhard WG (1994) Evidence for widespread courtship during copulation in 131 species of insects and spiders, and implications for cryptic female choice. Evolution Int J Org Evolution 48:711–733. doi:10.2307/2410481

    Google Scholar 

  • Eberhard WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Ekblom T (1926) Morphological and biological studies of the Swedish families of Hemiptera–Heteroptera. Part I. The families Saldidae, Nabidae, Lygaeidae, Hydrometridae, Veliidae and Gerridae. Zool bidrag Uppsala 10:31–180

    Google Scholar 

  • Fedorov SM (1927) Studies in the copulation and oviposition of Anacridium aegyptium, L. (Orthoptera, Acrididae). Trans entomol Soc Lond 75:53–61

    Google Scholar 

  • Friederichs K (1934) Das Gemeinschaftsleben der Embiiden und Näheres zur Kenntnis der Arten. Arch Naturgesch NF 3:405–444

    Google Scholar 

  • Gielis C (1993) Generic revision of the superfamily Pterophoroidea (Lepidoptera). Zool Verh 290:1–139

    Google Scholar 

  • Haas F (1995) The phylogeny of the Forficulina, a suborder of the Dermaptera. Syst Entomol 20:85–98. doi:10.1111/j.1365-3113.1995.tb00085.x

    Article  Google Scholar 

  • Haas F, Kukalova-Peck J (2001) Dermaptera hindwing structure and folding: new evidence for familial, ordinal and superordinal relationships within Neoptera (Insecta). Eur J Entomol 98:445–509

    Google Scholar 

  • Hase A (1932) Beobachtungen an venezolanischen Triatoma-Arten, sowie zur allgemeinen Kenntnis der Familie der Triatomidae (Hemipt.–Heteropt.). Zeitschr Parasitenk 4:585–652 (pl. 4)

    Article  Google Scholar 

  • Hebsgaard MB, Andersen NM, Damgaard J (2004) Phylogeny of the true water bugs (Nepomorpha: Hemiptera–Heteroptera) based on 16S and 28S rDNA and morphology. Syst Entomol 29:488–508. doi:10.1111/j.0307-6970.2004.00254.x

    Article  Google Scholar 

  • Heming-van Battum KE, Heming BS (1989) Structure, function, and evolutionary significance of the reproductive system in males of Hebrus ruficeps and H. pusillus (Heteroptera, Gerromorpha, Hebridae). J Morphol 202:281–323. doi:10.1002/jmor.1052020302

    Article  Google Scholar 

  • Hennig W (1973) Ordnung Diptera (Zweiflügler). Handb Zool 4(2) 2/31:1–337

  • Herter K (1963) Zur Fortpflanzungsbiologie des Sand- oder Uferohrwurms Labidura riparia Pall. Zool Beitr NF 8:297–329

    Google Scholar 

  • Hincks WD, Popham EJ (1970) Dermaptera. In: Tuxen SL (ed) Taxonomists’s glossary of genitalia in insects. Munksgaard, Copenhagen, pp 75–80

    Google Scholar 

  • Hoch H (2006) Systematics and evolution of Iolania (Hemiptera: Fulgoromorpha: Cixiidae) from Hawai’i. Syst Entomol 31:302–320. doi:10.1111/j.1365-3113.2005.00312.x

    Article  Google Scholar 

  • Hodges RW (1998) The Gelechioidea. Handb Zool 4(35):131–158

    Google Scholar 

  • Holland GP (1955) Primary and secondary sexual characteristics of some Ceratophyllinae, with notes on the mechanism of copulation (Siphonaptera). Trans R entomol Soc Lond 107:233–248

    Google Scholar 

  • Hsu Y-F, Powell JA (2005) Phylogenetic relationships within Heliodinidae and systematics of moths formerly assigned to Heliodines Stainton (Lepidoptera: Yponomeutoidea). Univ California Publ 124:1–158 (Figs. 26–220)

    Google Scholar 

  • Huber BA, Sinclair B, Schmitt M (2007) The evolution of asymmetric genitalia in spiders and insects. Biol Rev Camb Philos Soc 82:647–698. doi:10.1111/j.1469-185X.2007.00029.x

    Article  PubMed  Google Scholar 

  • Jordan KHC (1972) Heteroptera (Wanzen). Handb Zool, IV Arthropoda, 2 Insecta 20:1–113

  • Jordan KHC, Wendt A (1938) Zur Biologie von Salda litoralis L. (Hem. Het.). Stettiner entomol Z 99:273–292

    Google Scholar 

  • Kaila L (2004) Phylogeny of the superfamily Gelechioidea (Lepidoptera: Ditrysia): an exemplar approach. Cladistics 20:303–340. doi:10.1111/j.1096-0031.2004.00027.x

    Article  Google Scholar 

  • Kaltenbach A (1978) Mecoptera (Schnabelkerfe, Schnabelfliegen). Handb Zool, IV Arthropoda, 2 Insecta 28:1–111

  • Kamimura Y (2006) Right-handed penises of the earwig Labidura riparia (Insecta, Dermaptera, Labiduridae): evolutionary relationships between structural and behavioral asymmetries. J Morphol 267:1381–1389. doi:10.1002/jmor.10484

    Article  CAS  PubMed  Google Scholar 

  • Keilbach R (1935) Über asymmetrische Flügellage bei Insekten und ihre Beziehungen zu anderen Asymmetrien. Z Morphol Oekol Tiere 29:1–44. doi:10.1007/BF00407463

    Article  Google Scholar 

  • Khalifa A (1950) Spermatophore production in Blatella germanica L. (Orthoptera: Blattidae). Proc R entomol Soc Lond (A) 25:53–61

    Google Scholar 

  • Klier E (1956) Zur Konstruktionsmorphologie des männlichen Geschlechtsapparates der Psocopteren. Zool Jb Abt Anat Ontog Tiere 75:207–286

    Google Scholar 

  • Kluge NY (2003) Trudi Russkogo Entomologicheckogo Obshchestva. Ob evolyutsii i homologii genitalinich pridatkov nacekomich 74:3–16 (in Russian)

  • Kuhl W (1928) Die Variabilität der abdominalen Körperanhänge von Forficula auricularia L. unter Berücksichtigung ihrer normalen und abnormen Entwicklung, nebst einem Anhang über die Geschlechtsbiologie. Z Morphol Oekol Tiere 12:299–532. doi:10.1007/BF00403121

    Article  Google Scholar 

  • Kullenberg B (1947) Über Morphologie und Funktion des Kopulationsapparates der Capsiden und Nabiden. Zool bidrag Uppsala 24:217–418

    Google Scholar 

  • Kunze L (1959) Die funktionsanatomischen Grundlagen der Kopulation der Zwergzikaden, untersucht an Euscelis plebejus (Fall.) und einigen Typholocybinen. D entomol Z (NF) 4:322–387

    Google Scholar 

  • Kuznetzov VI, Baryshnikova SV (2004) Evolutionary-morphological approach to the systematics of leafmining moths of the genus Phyllonorycter Hbn. (Lepidoptera, Gracillariidae) with account of species feeding specialization. Entomol Rev Wash 84:588–599

    Google Scholar 

  • Lamb CG (1922) The geometry of insect pairing. Proc R Soc Lond B Biol Sci 94:1–11

    Article  Google Scholar 

  • Landry J-F (1991) Systematics of Nearctic Scythrididae (Lepidoptera: Gelechioidea): phylogeny and classification of supraspecific taxa, with a review of described species. Mem Entomol Soc Can 160:1–341

    Google Scholar 

  • Larsén O (1938) Untersuchungen über den Geschlechtsapparat der aquatilen Wanzen. Opusc Entomol Suppl 1:1–388

    Google Scholar 

  • Ludwig W (1932) Das Rechts-Links-Problem im Tierreich und beim Menschen. Springer, Berlin

    Google Scholar 

  • McAlpine JF (1981) Morphology and terminology—adults. In: McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM (eds) Manual of Nearctic Diptera, vol 1, Agriculture Canada Monograph 27:9–63

  • Mickoleit G, Mickoleit E (1976) Über die funktionelle Bedeutung der Tergalapophysen von Boreus westwoodi (Hagen) (Insecta, Mecoptera). Zoomorph 85:157–164. doi:10.1007/BF00995409

    Article  Google Scholar 

  • Mickoleit G, Mickoleit E (1978) Zum Kopulationsverhalten des Mückenhaftes Bittacus italicus (Mecopetra: Bittacidae). Entomol Gen 5:1–15

    Google Scholar 

  • Mika G (1959) Über das Paarungsverhalten der Wanderheuschrecke Locusta migratoria R. und F. und deren Abhängigkeit vom Zustand der inneren Geschlechtsorgane. Zool Beitr 4:153–203

    Google Scholar 

  • Mitzmain MB (1910) Some new facts on the bionomics of the California rodent fleas. Ann Entomol Soc Am 3:61–82

    Google Scholar 

  • Mockford EL (1957) Life history studies on some Florida insects on the genus Archipsocus (Psocoptera). Bull Fla State Mus Biol Sci 1:253–274

    Google Scholar 

  • Morgan AH (1929) The mating flight and the vestigial structures of the stump-legged mayfly, Campsurus segnis Needham. Ann entomol Soc America 22:61–68 (pl. 1)

    Google Scholar 

  • Morse JC, Yang L (2002) Phylogeny, classification, and historical biogeography of world species of Mystacides (Trichoptera: Leptoceridae), with a new species from Sri Lanka. Nova Suppl Entomol 15:173–186

    Google Scholar 

  • Nelson CH (1984) Numerical cladistic analysis of phylogenetic relationships in Plecoptera. Ann Entomol Soc Am 77:466–473

    Google Scholar 

  • Nuttall GHF (1917) Studies on Pediculus I. The copulatory apparatus and the process of copulation in Pediculus humanus. Parasitology 9:293–324 (pl. 3, 4)

    Article  Google Scholar 

  • Ogden TH, Whiting MF (2003) The problem with “the Paleoptera problem:” sense and sensitivity. Cladistics 19:432–442

    Google Scholar 

  • Popham EJ (1965) The functional morphology of the reproductive organs of the common earwig (Forficula auricularia) and other Dermaptera with reference to the natural classification of the order. J Zool 146:1–43

    Article  Google Scholar 

  • Rawat BL (1939) On the habits, metamorphosis and reproductive organs of Naucoris cimicoides L. (Hemiptera–Heteroptera). Trans R entomol Soc Lond 88:119–138

    Google Scholar 

  • Richards OW (1927) Sexual selection and allied problems in the insects. Biol Rev Camb Philos Soc 11:298–364. doi:10.1111/j.1469-185X.1927.tb01401.x

    Google Scholar 

  • Ross ES (1970) Biosystematics of the Embioptera. Annu Rev Entomol 15:157–172. doi:10.1146/annurev.en.15.010170.001105

    Article  Google Scholar 

  • Ross ES (2000) A review of the biology of Embiidina. Occas Pap Calif Acad Sci 149(2):1–36

    Google Scholar 

  • Rothschild M, Hinton HE (1968) Holding organs on the antennae of male fleas. Proc R entomol Soc Lond (A) 43:105–107

    Google Scholar 

  • Schmutz W (1955) Zur Konstruktionsmorphologie des männlichen Geschlechtsapparates der Mallophagen. Zool Jb Abt Anat Ontog Tiere 74:189–338

    Google Scholar 

  • Schrader F (1930) Observations on the biology of Protortonia primitiva (Coccidae). Ann Entomol Soc Am 23:126–132

    Google Scholar 

  • Schuh RT, Slater JA (1995) True bugs of the world (Hemiptera: Heteroptera). Classification and natural history. Cornell University Press, Ithaca and London

    Google Scholar 

  • Schulmeister S (2001) Functional morphology of the male genitalia and copulation in lower Hymenoptera, with special emphasis on the Tenthredinoidea s. str. (Insecta, Hymenoptera, ‘Symphyta’). Acta Zool 82:331–349. doi:10.1046/j.1463-6395.2001.00094.x

    Article  Google Scholar 

  • Scott JA (1978) Mid-valval flexion in the left valva of asymmetric genitalia of Erynnis (Hesperiidae). J Lepid Soc 32:304–305

    Google Scholar 

  • Scudder GGE (1971) Comparative morphology of insect genitalia. Annu Rev Entomol 16:379–406. doi:10.1146/annurev.en.16.010171.002115

    Article  Google Scholar 

  • Séguy E (1944) Insectes ectoparasites (Mallophages). Faune Fr 43:23–407

    Google Scholar 

  • Sforza R, Bourgoin T (1998) Female genitalia and copulation of the planthopper Hyalesthes obsoletus Signoret (Hemiptera: Fulgoromorpha: Cixiidae). Ann Soc entomol France (NS) 34:63–70

    Google Scholar 

  • Sihvonen P (2005) Phylogeny and classification of the Scopulini moths (Lepidoptera: Geometridae, Sterrhinae). Zool J Linn Soc 143:473–530. doi:10.1111/j.1096-3642.2005.00153.x

    Article  Google Scholar 

  • Sinclair BJ, Cumming JM (2006) The morphology, higher-level phylogeny and classification of the Empidoidea (Diptera). Zootaxa 1180:1–172

    Google Scholar 

  • Singh-Pruthi H (1925) The morphology of the male genitalia in Rhynchota. Trans entomol Soc London (1925):127–267

  • Snodgrass RE (1936) Morphology of the insect abdomen. Part III. The male genitalia. Smiths Misc Coll 95:1–96

    Google Scholar 

  • Snodgrass RE (1937) The male genitalia of orthopteroid insects. Smiths Misc Coll 96:1–107

    Google Scholar 

  • Soulier-Perkins A, Bourgoin T (1998) Copulatory mechanisms and sexual selection in the Lophopidae (Hemiptera: Fulgoromorpha). Ann Soc entomol France (NS) 34:149–162

    Google Scholar 

  • Statzner B (1974) Funktionsmorphologische Studien am Genitalapparat von drei neuen Cheumatopsyche-Arten (Trichoptera, Hydropsychidae). Zool Anz 193:382–398

    Google Scholar 

  • Stefani R (1953) Un particolare modo di accoppiamento negli Insetti Embioterri. Rend Accad Naz Lincei (sci fis mat nat) ser 8(14):544–549

    Google Scholar 

  • Steiner P (1937) Beitrag zur Fortpflanzungsbiologie und Morphologie des Genitalapparates von Boreus hiemalis L. Z Morph Ökol Tiere 32:276–288

    Article  Google Scholar 

  • Stewart KW, Stark BP (1977) Reproductive system and mating of Hydroperla crosbyi: a newly discovered method of sperm transfer in Insecta. Oikos 28:84–89. doi:10.2307/3543326

    Article  Google Scholar 

  • Takemon Y (1990) Functional morphology of the genitalia in Epeorus ikanonis (Ephemeroptera, Heptageniidae). Jap J Entomol 58:115–124

    Google Scholar 

  • Terry LI, Dyreson E (1996) Behavior of Frakliniella occidentalis (Thysanoptera: Thripidae) within aggregations, and morphometric correlates of fighting. Ann Entomol Soc Am 89:589–602

    Google Scholar 

  • Tilgner EH, Kiselyova TG, McHugh JV (1999) A morphological study of Timema cristinae Vickery with implications for the phylogenetics of Phasmida. Entomol Z 46:149–162

    Google Scholar 

  • Tobias W (1972) Zur Kenntnis europäischer Hydropsychidae (Insecta: Trichoptera), I. Senckenb Biol 53:59–89

    Google Scholar 

  • Vickery VR (1993) Revision of Timema Scudder (Phasmatoptera: Timematodea) including three new species. Can Entomol 125:657–692

    Article  Google Scholar 

  • Walker EM (1922) The terminal structures of orthopteroid insects: a phylogenetic study. Ann Entomol Soc Am 15:1–87

    Google Scholar 

  • Walker KA, Fell RD (2001) Courtship roles of male and female European earwigs, Forficula auricularia L. (Dermaptera: Forficulidae), and sexual use of forceps. J Insect Behav 14:1–17. doi:10.1023/A:1007843227591

    Article  Google Scholar 

  • Weber H (1930) Die Biologie der Hemipteren. Biol Studienb Berl 11:1–537

    Google Scholar 

  • White TCR (1970) Some aspects of the life history, host selection, dispersal and oviposition of adult Cardiaspina densitexta (Homoptera: Psyllidae). Aust J Zool 18:105–117. doi:10.1071/ZO9700105

    Article  Google Scholar 

  • Whitman DW, Loher W (1984) Morphology of the male sex organs and insemination in the grasshopper Taeniopoda eques (Burmeister). J Morphol 179:1–12. doi:10.1002/jmor.1051790102

    Article  Google Scholar 

  • Yang L, Morse JC (2002) Glossosoma subgenus Lipoglossa (Trichoptera: Glossosomatidae) of China. Nova Suppl Entomol 15:253–276

    Google Scholar 

Download references

Acknowledgments

I thank D. Joly and M. Schmitt for their invitation to the symposium on animal genitalia at the ICZ2008 meeting in Paris, and numerous participants for stimulating discussions. Two anonymous referees provided helpful suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard A. Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, B.A. Mating positions and the evolution of asymmetric insect genitalia. Genetica 138, 19–25 (2010). https://doi.org/10.1007/s10709-008-9339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9339-6

Keywords

Navigation