Skip to main content
Log in

A striking lack of genetic diversity across the wide-ranging amphibian Gastrophryne carolinensis (Anura: Microhylidae)

  • Published:
Genetica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We examine phylogeographic structure across a wide-ranging microhylid frog (Gastrophryne carolinensis) using both mitochondrial (mtDNA) and nuclear (AFLP) data. Species with similar ecological characteristics such as large range size, low vagility, or existence across known biogeographic barriers, often are comprised of multiple, cryptic lineages. Surprisingly, our analyses of both portions of the genome show very little phylogeographic or population genetic structure. The family Microhylidae is one of the largest families of anurans with over 60 genera and around 400 species distributed across much of the world (Americas, Asia, Africa, and Madagascar), but very few phylogeographic studies have assessed intraspecific genetic diversity across the mitochondrial and nuclear genomes. Our results suggest that G. carolinensis, one of only three species of microhylid native to the US, has experienced a severe population bottleneck with subsequent range expansion. Comparable molecular data from closely related microhylids, in addition to demographic and ecological analyses, will provide valuable insight into patterns of genetic diversity and the processes driving phylogeographic diversity in these wide-ranging frogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

ISSR:

Intersimple sequence repeat

IUCN:

The World Conservation Union

LC:

Species of least concern

m:

Meters

ML:

Maximum-likelihood

mM:

Millimolar

MP:

Maximum parsimony

mtDNA:

Mitochondrial DNA

ng:

Nanograms

NJ:

Neighbor-joining

μl:

Microliter

PCoA:

Principal coordinate analysis

RAPD:

Random amplification of polymorphic DNA

cyt b :

Cytochrome b

ND4:

Nicotinamide adenine dinucleotide dehydrogenase subunit 4

tRNA:

Transfer RNA

References

  • Althoff DM, Gitzendanner MA, Segraves KA (2007) The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst Biol 56:477–484

    Article  PubMed  CAS  Google Scholar 

  • Austin JD, Lougheed SC, Neidrauer L, Chek AA, Boag PT (2002) Cryptic lineages in a small frog: the post-glacial history of the spring peeper, Pseudacris crucifer (Anura: Hylidae). Mol Phylogenet Evol 25:316–329

    Article  PubMed  CAS  Google Scholar 

  • Austin JD, Lougheed SC, Boag PT (2004) Discordant temporal and geographic patterns in maternal lineages of eastern north American frogs, Rana catesbeiana (Ranidae) and Pseudacris crucifer (Hylidae). Mol Phylogenet Evol 32:799–816

    Article  PubMed  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

    Google Scholar 

  • Avise J (2000) Phylogeography. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Awbrey F (1965) An experimental investigation of the effectiveness of anuran mating calls as isolation mechanisms. Dept Biol, Austin, U Texas

    Google Scholar 

  • Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    Article  PubMed  Google Scholar 

  • Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744

    Article  PubMed  CAS  Google Scholar 

  • Bensch S, Akesson M (2005) Ten years of ALFP in ecology and evolution: why so few animals. Mol Ecol 14:2899–2914

    Article  PubMed  CAS  Google Scholar 

  • Berendzen P, Simons A, Wood R (2003) Phylogeography of the northern hogsucker, Hypentelium nigricans (Teleostei: Cypriniformes): genetic evidence for the evidence of the ancient Teays River. J Biogeogr 30:1139–1152

    Article  Google Scholar 

  • Bermingham E, Moritz C (1998) Comparative phylogeography: concepts and applications. Mol Ecol 7:367–369

    Article  Google Scholar 

  • Berres ME, Engels WR, Kirsch JAW (in review) A method for genotyping ostensibly dominant markers in AFLP fingerprints. Genetics

  • Blair W (1955) Size difference as a possible isolation mechanism in Microhyla. Am Nat 89:297–301

    Article  Google Scholar 

  • Brant SV, Orti G (2003) Phylogeography of the northern short-tailed shrew, Blarina brevicauda (Insectivora: Soricidae): past fragmentation and postglacial recolonization. Mol Ecol 12:1435–1449

    Article  PubMed  Google Scholar 

  • Brede EG, Beebee TJC (2006) Large variations in the ratio of effective breeding and census population sizes between two species of pond-breeding anurans. Biol J Linn Soc 89:365–372

    Article  Google Scholar 

  • Burbrink FT (2002) Phylogeographic analysis of the cornsnake (Elaphe guttata) complex inferred from maximum likelihood and Bayesian analyses. Mol Phylogenet Evol 25:465–476

    Article  PubMed  CAS  Google Scholar 

  • Burbrink FT, Lawson R, Slowinski JB (2000) Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution 54:2107–2118

    PubMed  CAS  Google Scholar 

  • Bussell JD, Waycott M, Chappill JA (2005) Arbitrarily amplified DNA markers as characters for phylogenetic inference. Perspect Plant Ecol Evol Syst 7:3–26

    Article  Google Scholar 

  • Campbell D, Duchesne P, Bernatchez L (2003) AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 12:1979–1991

    Article  PubMed  CAS  Google Scholar 

  • Carvalho ALd (1954) A preliminary synopsis of the genera of American Microhylid frogs. Occas Pap Mus Zool Univ Mich 555:1–19

    Google Scholar 

  • Case SM, Haneline PG, Smith MF (1975) Protein variation in several species of Hyla. Syst Zool 24:281–295

    Article  CAS  Google Scholar 

  • Casgrain P, Legendre P (2001) The R Package for multivariate and spatial analysis version 4.0d5 – User’s manual. Département de sciences biologiques, Université de Montreal, Montreal. URL: http://www.fas.umontreal.ca/BIOL/legendre/

  • Castoe TA, Spencer CL, Parkinson CL (2007) Phylogeographic structure and historical demography of the western diamondback rattlesnake (Crotalus atrox): a perspective on North American desert biogeography. Mol Phylogenet Evol 42:193–212

    Article  PubMed  CAS  Google Scholar 

  • Chiang YC, Schaal BA, Ge XJ, Chiang TY (2004) Range expansion leading to departures from neutrality in the nonsymbiotic hemoglobin gene and the cpDNA trnL-trnF intergenic spacer in Trema dielsiana (Ulmaceae). Mol Phylogenet Evol 31:929–942

    Article  PubMed  CAS  Google Scholar 

  • Conant R, Collins JT (1998) A field guide to reptiles and amphibians: Eastern and Central North America. Houghton Mifflin, Boston

    Google Scholar 

  • Creer S, Thorpe RS, Malhotra A, Chou WH, Stenson AG (2004) The utility of AFLPs for supporting mitochondrial DNA phylogeographical analyses in the Taiwanese bamboo viper, Trimeresurus stejnegeri. J Evol Biol 17:100–107

    Article  PubMed  CAS  Google Scholar 

  • Curtis JMR, Taylor EB (2004) The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biol Conserv 115:45–54

    Article  Google Scholar 

  • Degnan SM (1993) The perils of single-gene trees-mitochondrial versus single-copy nuclear-DNA variation in white-eyes (Aves, Zosteropidae). Mol Ecol 2:219–225

    Article  Google Scholar 

  • Dodd CK (1996) Use of terrestrial habitats by amphibians in the sandhill uplands of north-central Florida. Alytes 14:42–52

    Google Scholar 

  • Donnelly M, de Sá RO, Guyer C (1990) Description of the tadpoles of Gastrophryne pictiventris and Nelsonophryne aterrima (Anura: Microhylidae), with a review of morphological variation in free-swimming Microhylid Larvae. Am Mus Novit 2976:1–19

  • Downie D (2004) Phylogeography in a galling insect, grape phylloxera, Daktulosphaira vitifoliae (Phylloxeridae) in the fragmented habitat of the Southwest USA. J Biogeogr 31:1759–1768

    Article  Google Scholar 

  • Dragoo JW, Lackey JA, Moore KE, Lessa EP, Cook JA, Yates TL (2006) Phylogeography of the deer mouse (Peromyscus maniculatus) provides a predictive framework for research on hantaviruses. J Gen Virol 87:1997–2003

    Article  PubMed  CAS  Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Edwards S, Berrli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854

    PubMed  CAS  Google Scholar 

  • Ford LS, Cannatella DC (1993) The major clades of frogs. Herpetol Monogr 7:94–117

    Article  Google Scholar 

  • Frost DR (ed) (1985) Amphibian species of the world. A taxonomic and geographical reference. Association of Systematics Collections and Allen Press, Lawrence, Kansas

    Google Scholar 

  • Frost D, Grant T, Faivovich J, Bain R, Haas A, Haddad C, de Sa R, Channing A, Wilkinson M, Donnellan S, Raxworthy C, Campbell J, Blotto B, Moler P, Drewes R, Nussbaum R, Lynch J, Green D, Wheeler W (2006) The amphibian tree of life. Bull Am Mus Nat Hist 297:1–370

    Article  Google Scholar 

  • Galtier N, Boursot P (2000) A new method for locating changes in a tree reveals distinct nucleotide polymorphism vs divergence patterns in mouse mitochondrial control region. J Mol Evol 50:224–231

    PubMed  CAS  Google Scholar 

  • Giannasi N, Thorpe RS, Malhotra A (2001) The use of amplified fragment length polymorphism in determining species trees at fine taxonomic levels: analysis of a medically important snake, Trimeresurus albolabris. Mol Ecol 10:419–426

    Article  PubMed  CAS  Google Scholar 

  • Goldberg CS, Sullivan BK, Malone JH, Schwalbe CR (2004) Divergence among barking frogs (Eleutherodactylus augusti) in the southwestern United States. Herpetologica 60:312–320

    Article  Google Scholar 

  • Groot TVM, Bruins E, Breeuwer JAJ (2003) Molecular genetic evidence for parthenogenesis in the Burmese python, Python molurus bivittatus. Heredity 90:130–135

    Article  PubMed  CAS  Google Scholar 

  • Hahn V (2002) Genetic variation for resistance to Sclerotinia head rot in sunflower inbred lines. Field Crops Res 77:153–159

    Article  Google Scholar 

  • Hare MP (2001) Prospects for nuclear gene phylogeography. Trends Ecol Evol 16:700–706

    Article  Google Scholar 

  • Hickerson M, Meyer C, Moritz C (2006). DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 55:729–739

    Article  PubMed  Google Scholar 

  • Hoffman EA, Blouin MS (2004) Evolutionary history of the northern leopard frog: reconstruction of phylogeny, phylogeography, and historical changes in population demography from mitochondrial DNA. Evolution 58:145–159

    PubMed  Google Scholar 

  • Holbrook JE (1836) North American herpetology. J. Dobson Publishers, Pennsylvania, Philadelphia

    Google Scholar 

  • Howes BJ, Lindsay B, Lougheed SC (2006) Range-wide phylogeography of a temperate lizard, the five-lined skink (Eumeces fasciatus). Mol Phylogenet Evol 40:183

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck J, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Jaeger JR, Riddle BR, Bradford DF (2005) Cryptic Neogene vicariance and Quaternary dispersal of the red-spotted toad (Bufo punctatus): insights on the evolution of North American warm desert biotas. Mol Ecol 14:3033–3048

    Article  PubMed  CAS  Google Scholar 

  • Janzen F, Krenz J, Haselkorn T, Brodie E, Brodie E (2002) Molecular phylogeography of the common garter snakes (Thamnophis sirtalis) in western North America: implications for regional historical forces. Mol Ecol 11:1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Jehle R, Sztatecsny M, Wolf JBW, Whitlock A, Hodl W, Burke T (2007) Genetic dissimilarity predicts paternity in the smooth newt (Lissotriton vulgaris). Biol Lett 3:526–528

    Article  PubMed  Google Scholar 

  • Joseph L, Wilke T, Alpers D (2003) Independent evolution of migration on the South American landscape in a long-distance temperate-tropical migratory bird, Swainson’s flycatcher (Myiarchus swainsoni). J Biogeogr 60:925–937

    Article  Google Scholar 

  • Kasapidis P, Magoulas A, Mylonas M, Zouros E (2005) The phylogeography of the gecko Cyrtopodion kotschyi (Reptilia: Gekkonidae) in the Aegean archipelago. Mol Phylogenet Evol 35:612–623

    Article  PubMed  CAS  Google Scholar 

  • Kinkead K, Abbott A, Otis D (2007) Genetic variation among Ambystoma breeding populations on the Savannah River Site. Conserv Genet 8:281–292

    Article  Google Scholar 

  • Klutsch CFC, Misof B, Grosse WR, Moritz RFA (2007) Genetic and morphometric differentiation among island populations of two Norops lizards (Reptilia: Sauria: Polychrotidae) on independently colonized islands of the Islas de Bahia (Honduras). J Biogeogr 34:1124–1135

    Article  Google Scholar 

  • Koopman WIM (2005) Phylogenetic signal in AFLP data sets. Syst Biol 54:197–217

    Article  PubMed  Google Scholar 

  • Lannoo M (ed) (2005) Amphibian declines. UC Press, California

    Google Scholar 

  • Lemmon EM, Lemmon AR, Collins JT, Lee-Yaw JA, Cannatella DC (2007) Phylogeny-based delimitation of species boundaries and contact zones in the trilling chorus frogs (Pseudacris). Mol Phylogenet Evol 44:1068–1082

    Article  PubMed  Google Scholar 

  • Loftus-Hills J, Littlejohn M (1992). Reinforcement and reproductive character displacement in Gastrophryne carolinensis and G. olivacea (Anura: Microhylidae): a reexamination. Evolution 46:896–906

    Article  Google Scholar 

  • Lowe WH, Likens GE McPeek MA (2006) Linking direct and indirect data on dispersal: isolation by slope in a headwater stream salamander. Ecology 87:334–339

    Article  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Mariette S, Le Corre V, Austerlitz F, Kremer A (2002) Sampling within the genome for measuring within-population diversity: trade-offs between markers. Mol Ecol 11:1145–1156

    Article  PubMed  CAS  Google Scholar 

  • Masta S, Lauren NM, Routman EJ (2003) Population genetic structure of the toad Bufo woodhousii: an empirical assessment of the effects of haplotype extinction on nested clade analysis. Mol Ecol 12:1541–1554

    Article  PubMed  CAS  Google Scholar 

  • Measey GJ, Galbusera P, Breyne P, Matthysen E (2007) Gene flow in a direct-developing, leaf litter frog between isolated mountains in the Taita Hills, Kenya. Conserv Genet 8:1177–1188

    Article  Google Scholar 

  • Meudt HM, Clarke AC (2006) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  CAS  Google Scholar 

  • Monsen KJ, Blouin MS (2003) Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance. Mol Ecol 12:3275–3286

    Article  PubMed  CAS  Google Scholar 

  • Moore W (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees vs. nuclear-gene trees. Evolution 49:718–726

    Article  Google Scholar 

  • Moore W (1997) Mitochondrial-gene trees vs. nuclear-gene trees, A reply to Hoelzer. Evolution 51:627–629

    Article  Google Scholar 

  • Mulcahy D, Mendelson J (2000) Phylogeography and speciation of the morphologically variable, widespread species Bufo valliceps, based on molecular evidence from mtDNA. Mol Phylogenet Evol 17:173–189

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nelson C (1972a) Gastrophryne carolinensis (Holbrook) Eastern narrow-mouthed toad. Cat Am Amph Rept 120:1–4

    Google Scholar 

  • Nelson C (1972b) Systematic studies of the North American Microhylid genus Gastrophryne. J Herpetol 6:111–137

    Article  Google Scholar 

  • Nielson M, Lohman K, Sullivan J (2001) Phylogeography of the tailed frog (Ascaphus truei): implication for the biogeography of the Pacific Northwest. Evolution 55:147–160

    PubMed  CAS  Google Scholar 

  • Nielson M, Lohman K, Daugherty CH, Allendorf FW, Knudsen KL, Sullivan J (2006) Allozyme and mitochondrial DNA variation in the tailed frog (Anura: Ascaphus): the influence of geography and gene flow. Herpetologica 62:235–258

    Article  Google Scholar 

  • Nittinger F, Gamauf A, Pinsker W, Wink M, Haring E (2007) Phylogeography and population structure of the saker falcon (Falco cherrug) and the influence of hybridization: mitochondrial and microsatellite data. Mol Ecol 16:1497–1517

    Article  PubMed  CAS  Google Scholar 

  • Nylander J (2004) MrModeltest (Program distributed by the author). Evolutionary Biology Centre, Eppsala University

  • Ogden R, Thorpe RS (2002) The usefulness of amplified fragment length polymorphism markers for taxon discrimination across graduated fine evolutionary levels in Caribbean Anolis lizards. Mol Ecol 11:437–445

    Article  PubMed  CAS  Google Scholar 

  • O’Hanlon PC, Peakall R (2000) A simple method for the detection of size homoplasy among amplified fragment length polymorphism fragments. Mol Ecol 9:815–816

    Article  PubMed  CAS  Google Scholar 

  • Olsson M, Ujvari B, Wapstra E, Madsen T, Shine R, Bensch S (2005) Does mate guarding prevent rival mating in snow skinks? A test using AFLP. Herpetologica 61:389–394

    Article  Google Scholar 

  • Palumbi SR, Cipriano F, Hare MP (2001) Predicting nuclear gene coalescence from mitochondrial data: the three-times rule. Evolution 55(5): 859–868

    Article  PubMed  CAS  Google Scholar 

  • Parker H (1934) A monograph of the frogs of the family Microhylidae. British Museum of Natural History, London

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Recuero E, Martinez-Solano I, Parra-Olea G, Gracia-Paris M (2006) Phylogeography of Pseudacris regilla (Anura: Hylidae) in western North America, with a proposal for a new taxonomic rearrangement. Mol Phylogenet Evol 39:293–304

    Article  PubMed  Google Scholar 

  • Riberon A, Miaud C, Guyetant R, Taberlet P (2004) Genetic variation in an endemic salamander, Salamandra atra, using amplified fragment length polymorphism. Mol Phylogenet Evol 31:910–914

    Article  PubMed  CAS  Google Scholar 

  • Richmond JQ, Jockusch EL (2007) Body size evolution simultaneously creates and collapses species boundaries in a clade of scincid lizards. Proc R Soc B 274:1701–1708

    Article  PubMed  Google Scholar 

  • Riddle B (1996) The historical assembly of continental biotas: late Quaternary range-shifting, areas of endemism, and biogeographic structure in the North American mammal fauna. Ecography 21:437–446

    Article  Google Scholar 

  • Riddle BR (2005) Is biogeography emerging from its identity crisis? J Biogeogr 32:185–186

    Article  Google Scholar 

  • Rissler LJ, Taylor DR (2003) The phylogenetics of Desmognathine salamander populations across the southern Appalachians. Mol Phylogenet Evol 27:197–211

    Article  PubMed  CAS  Google Scholar 

  • Rissler LJ, Wilbur HM, Taylor DR (2004) The influence of ecology and genetics on behavioral variation in salamander populations across the Eastern Continental Divide. Am Nat 164:201–213

    Article  PubMed  Google Scholar 

  • Rissler LJ, Hijmans R, Graham C, Moritz C, Wake D (2006) Phylogeographic lineages and species comparisons in conservation analyses: a case study of California herpetofauna. Am Nat 167:655–666

    Article  PubMed  Google Scholar 

  • Roark AW (2003) Comparative genetic analysis in insular and mainland populations of the Florida Cottonmouth, Agkistrodon piscivorous conanti. Thesis, University of Florida

  • Rodriguez-Robles J, Denardo D, Staubs R (1999) Phylogeography of the California mountain kingsnake, Lampropeltis zonata (Colubridae). Mol Ecol 8:1923–1934

    Article  PubMed  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck J (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Rozas R (2001) DnaSP 3.52 DNA sequence polymorphism, software for nucleotidic polymorphism analysis. Universitat de Barcelona, Barcelona

    Google Scholar 

  • Rudh A, Rogell B, Hoglund J (2007) Non-gradual variation in colour morphs of the strawberry poison frog Dendrobates pumilio: genetic and geographical isolation suggest a role for maintaining polymorphism. Mol Ecol 16:4284–4294

    Article  PubMed  CAS  Google Scholar 

  • Shaffer HB, Fellers GM, Magee A, Voss R (2000) The genetics of amphibian declines: population substructure and molecular differentiation in the Yosemite toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data. Mol Ecol 9:245–257

    Article  PubMed  CAS  Google Scholar 

  • Shaffer HB, Fellers GM, Voss SR, Olivers C, Pauly GB (2004) Species boundaries, phylogeography and conservation genetics of the red-legged frog (Rana aurora/draytonii) complex. Mol Ecol 13:2667–2677

    Article  PubMed  CAS  Google Scholar 

  • Simmons MP, Zhang L-B, Webb CT, Muller K (2007) A penalty of using anonymous dominant markers (AFLPs, ISSRs, and RAPDs) for phylogenetic inference. Mol Phylogenet Evol 42:528–542

    Article  PubMed  CAS  Google Scholar 

  • Sites JW, Marshall JC (2003) Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol 18:462–470

    Article  Google Scholar 

  • Smith MA, Green DM (2004) Phylogeography of Bufo fowleri at its northern range limit. Mol Ecol 13:3723–3733

    Article  PubMed  CAS  Google Scholar 

  • Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293

    Article  PubMed  Google Scholar 

  • Starkey DE, Shaffer HB, Burke RL, Forstner MR, Iverson JB, Janzen FJ, Rodin AG, Ultsch GR (2003) Molecular systematics, phylogeography, and the effects of Pleistocene glaciation in the painted turtle (Chrysemys picta) complex. Evolution 57:119–128

    PubMed  CAS  Google Scholar 

  • Strange R, Burr B (1997) Intraspecific phylogeography of North American highland fishes: a test of the Pleistocene vicariance hypothesis. Evolution 51:885–897

    Article  Google Scholar 

  • Sullivan J, Lavoue S, Arnegard M, Hopkins C (2004) AFLP’s resolve phylogeny and reveal mitochondrial introgression within a species flock of African Electric fish (Mormyroidea: Teleostei). Evolution 58:825–841

    PubMed  CAS  Google Scholar 

  • Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203

    Article  PubMed  Google Scholar 

  • Swenson NG, Howard DJ (2004) Do suture zones exist? Evolution 58:2391–2397

    PubMed  Google Scholar 

  • Swofford D (1999) PAUP*: phylogenetic analyses using parsimony (* and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Tinkle DW (1959) Observations of reptiles and amphibians in a Louisiana swamp. Am Midl Nat 62:189–205

    Article  Google Scholar 

  • Titus TA, Larson A (1996) Molecular phylogenetics of desmognathine salamanders (Caudata: Plethodontidae): a reevaluation of evolution in ecology, life history, and morphology. Syst Biol 45:451–472

    Article  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  PubMed  CAS  Google Scholar 

  • Vredenburg VT, Bingham R, Knapp R, Morgan JAT, Moritz C, Wake D (2007) Concordant molecular and phenotypic data delineate new taxonomy and conservation priorities for the endangered mountain yellow-legged frog. J Zool 271:361–374

    Article  Google Scholar 

  • Wang Y-Q, Zhu W-Q, Huang L, Zhou K-Y, Wang R-P (2006) Genetic diversity of Chinese alligator (Alligator sinensis) revealed by AFLP analysis: an implication on the management of captive conservation. Biodivers Conserv 15:2945–2955

    Article  Google Scholar 

  • Whitlock A, Sztatecsny M, Jehle R (2006) AFLPs: genetic markers for paternity studies in newts (Triturus vulgaris). Amphib-Reptil 27:126–129

    Article  Google Scholar 

  • Wild ER (1995) New genus and species of Amazonian microhylid frog with a phylogenetic analysis of new world genera. Copeia 1995:837–849

  • Wiley E, Mayden R (1985) Species and speciation in phylogenetic systematics, with examples from the North American fish fauna. Ann Mo Bot Gard 72:592–635

    Article  Google Scholar 

  • Zweifel RG (1986) A new genus and species of Microhylid frog from the Cerro de la Neblina region of Venezuela and a discussion of relationships among new world Microhylid genera. Am Mus Novit 2863:1–24

    Google Scholar 

Download references

Acknowledgements

We are grateful to the following individuals and institutions for their gracious contribution of tissue samples: Z. Ceviron, C. Austin, and R. Brumfield (Louisiana State University Museum of Natural History), T. LaDuc (Texas Natural History Collections), K. Ashton (Archbold Biological Station), and S. Trauth (Arknsas State University). For field help we thank A. Braswell, S. Trauth and his students, J. Apodaca, C. Winne, J. D. Wilson, M. Watson, M. Welker, C. Cox, and C. Makowsky. W. Holzenagel was instrumental in assisting with genetic analyses, and P. Chippindale assisted with analyses. We also thank two anonymous reviewers for helpful comments on this manuscript. Funding was provided by the National Science Foundation (DEB 0414033 and DBI 04-571) to LJR and the University of Alabama.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie J. Rissler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makowsky, R., Chesser, J. & Rissler, L.J. A striking lack of genetic diversity across the wide-ranging amphibian Gastrophryne carolinensis (Anura: Microhylidae). Genetica 135, 169–183 (2009). https://doi.org/10.1007/s10709-008-9267-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9267-5

Keywords

Navigation