Skip to main content
Log in

Characterization and comparative analysis of sequence-specific amplified polymorphisms based on two subfamilies of IRRE retrotransposons in Iris missouriensis (Iridaceae)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

DNA markers based on transposable-element polymorphisms are potentially useful alternatives to anonymous fragment-length polymorphisms (AFLPs). We developed the retrotransposon sequence-specific amplified polymorphism (retrotransposon SSAP) technique for the angiosperm Iris missouriensis (Iridaceae) in order to evaluate its use in generating population-genetic markers. Our cloning strategy identified two groups of long-terminal repeat retrotransposons of the IRRE family. Primers homologous to conserved regions of these elements generated repeatable and polymorphic markers. In comparison, the AFLP protocol failed to produce useful markers in our hands in this species. To investigate the distribution and evolutionary tempo of the two retrotransposons, we developed a phylogeny of representative species of subgenus Limniris based on chloroplast sequence. Sequences of both groups of retrotransposons were widespread in Limniris, but we also found evidence of substantial sequence and copy-number evolution since the divergence of I. missouriensis from other Limniris species. We corroborated these results with quantitative real-time PCR estimates of relative copy number. Importantly, the geographic structure of retrotransposon SSAP was strikingly different for the two groups of retrotransposons, indicating that different mutational dynamics and/or selective pressures govern their distribution. Although these primers should be useful for population-genetic studies of Iris missouriensis and other Limniris species, our findings reinforce the need for caution in evaluating transposable-element markers used to analyze the relatedness of populations or cultivars, as very different conclusions may be reached depending on the sequence amplified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment-length polymorphism

AMOVA:

Analysis of molecular variance

IMRE1:

An Iris missouriensis IRRE retroelement of undetermined subcategory identified in this study

IRRE:

Family of gypsy-type retrotransposons in Iris

IRRE-SSAP:

Sequence-specific amplified polymorphism using IRRE sequences as targets

LTR:

Long terminal repeat

RFU:

Relative fluorescence units

SSAP:

Sequence-specific amplified polymorphism

References

  • Arnold ML, Bouck AC, Cornman RS (2003) Verne Grant and Louisiana Irises: is there anything new under the sun? New Phytol 161:143–149

    Article  Google Scholar 

  • Bouck AC, Peeler R, Arnold ML, Wessler SR (2005) Genetic mapping of species boundaries in Louisiana Irises using IRRE retrotransposon display markers. Genetics 171:1289–1303

    Article  PubMed  CAS  Google Scholar 

  • Burke JM, Arnold ML (1999) Isolation and characterization of microsatellites in iris. Mol Ecol 8:1091–1092

    Article  CAS  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  Google Scholar 

  • Charlesworth B, Charlesworth D (1983) The population dynamics of transposable elements. Genet Res 42:1–27

    Article  Google Scholar 

  • Cornman RS, Arnold ML (2007) Phylogeography of Iris missouriensis (Iridaceae) based on nuclear and chloroplast markers. Mol Ecol 16(21):4585–4598

    Google Scholar 

  • Cornman RS, Burke JM, Wesselingh RA, Arnold ML (2004) Contrasting genetic structure of adults and progeny in a Louisiana Iris hybrid population. Evolution 58:2669–2681

    PubMed  CAS  Google Scholar 

  • Davison BL (1957) Iris missouriensis and Iris longipetala. Bull Amer Iris Soc 147:13–22

    Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Duarte JM, dos Santos JB, Melo LC (1999) Comparison of similarity coefficients based on RAPD markers in the common bean. Genet Mol Biol 22:427–432

    Google Scholar 

  • Dykes WR (1913) The genus Iris. Dover, New York

    Google Scholar 

  • Fay MF, Cowan RS, Leitch IJ (2005) The effects of nuclear DNA content C-value on the quality and utility of AFLP fingerprints. Ann Bot 95:237–246

    Article  PubMed  CAS  Google Scholar 

  • Foster RC (1937) A cyto-taxonomic survey of the North American species of Iris. Contrib Gray Herb 119:3–82

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electronica 4:1–9

    Google Scholar 

  • Hawkins JS, Kim HR, Nason JD, Wing RA, Wendel JF (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kentner EK, Arnold ML, Wessler SR (2003) Characterization of high-copy-number retrotransposons from the large genomes of the Louisiana iris species and their use as molecular markers. Genetics 164:685–697

    PubMed  CAS  Google Scholar 

  • Kidwell M, Evgen’ev MB (1999) How valuable are model organisms for transposable element studies? Genetica 107:103–111

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Le Rouzic A, Deceliere G (2005) Models of the population genetics of transposable elements. Genet Res 85:171–181

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    Article  PubMed  CAS  Google Scholar 

  • Mathew B (1989) The Iris, 2nd edn. Timber Press, Portland

    Google Scholar 

  • Morgan MT (2001) Transposable element number in mixed mating populations. Genet Res 77:261–275

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2005) GenAlEx V6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Posada D, Crandall KA, Templeton AR (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Tikhonov A, Jin Y-K et al (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    Article  PubMed  CAS  Google Scholar 

  • Schulman AH (2006) Molecular markers to assess genetic diversity. Euphytica DOI 10.1007/s10681-006-9282-5

  • Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 2007:264–275

    Article  CAS  Google Scholar 

  • Steele KP, Vilgalys R (1994) Phylogenetic analysis of Polemoniaceae using nucleotide sequences of the plastid gene matK. Syst Bot 19:126–142

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Panaud O (2003) Formation of Solo-LTRs through unequal homologous recombination counterbalances amplifications of LTR retrotransposons in Rice Oryza sativa L. Mol Biol Evol 20:528–540

    Article  PubMed  CAS  Google Scholar 

  • Vitte C, Panaud O (2005) LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenet Genome Res 110:91–107

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Vuylsteke M, Mank R, Antonise R et al (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935

    Article  CAS  Google Scholar 

  • Wares JP, Blakeslee AMH (2007) Amplified fragment length polymorphism data provide a poor solution to the Littorina littorea puzzle. Mar Biol Res 3:168–174

    Article  Google Scholar 

  • Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  PubMed  CAS  Google Scholar 

  • Wilson CA (2004) Phylogeny of Iris based on chloroplast matK gene and trnK intron sequence data. Mol Phylogenet Evol 33:402–412

    Article  PubMed  CAS  Google Scholar 

  • Whitelaw E, Martin DIK (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 27:361–365

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Schoen DJ (1999) Transposon dynamics and the breeding system. Genetica 107:139–148

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Le QH, Schoen DJ, Bureau TE (2001) Population dynamics of an Ac-like transposable element in self- and cross-pollinating Arabidopsis. Genetics 158:1279–1288

    PubMed  CAS  Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge technical advice or assistance from E. Basenko, E. Kentner, M. McEachern, M. Osterlund, D. Tolligan, R. Peeler, and J. Willis. This work was supported by a grant from the American Iris Society (R.S.C.), by National Science Foundation Training Grant DBI 9602223 (R.S.C.), and by National Science Foundation Grant DEB-0345123 (M.L.A.). R.S.C. was also supported by a University of Georgia Presidential Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Scott Cornman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornman, R.S., Arnold, M.L. Characterization and comparative analysis of sequence-specific amplified polymorphisms based on two subfamilies of IRRE retrotransposons in Iris missouriensis (Iridaceae). Genetica 135, 25–38 (2009). https://doi.org/10.1007/s10709-008-9248-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-008-9248-8

Keywords

Navigation