Skip to main content
Log in

Two novel elements (CFG1 and PYG1) of Mag lineage of Ty3/Gypsy retrotransposons from Zhikong scallop (Chlamys farreri) and Japanese scallop (Patinopecten yessoensis)

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Two novel elements (CFG1 and PYG1) of Mag lineage of Ty3/Gypsy retrotransposons were cloned from Zhikong scallop (Chlamys farreri) and Japanese scallop (Patinopecten yessoensis). The total length of the CFG1 element is 4826 bp, including 5′-LTR (192 bp), the entire ORF (4047 bp) and 3′-LTR (189 bp). The entire ORFs of both CFG1 and PYG1 elements are composed of 1348 aa and do not have any frameshifts. Their closest relative is Jule element from the poeciliid fish (Xiphophorus maculatus). On average, the diploid genome of C. farreri contains approximately 84 copies of CFG1 elements. We summarize the major features of CFG1, PYG1 and other elements of Mag lineage of the Ty3/Gypsy group. mRNA expression of CFG1 element in larvae increases gradually before the gastrulae stage and decreases gradually afterward, whereas in adductor such expression in adductor muscle and digestive gland are lower than those in other tissues. Overall, mRNA expression of CFG1 element in the early larvae is significantly higher than that in adult tissues. In muscle tissue, while the promoter and partial GAG domain of CFG1 element are unmethylated, the partial RT domain is highly methylated. These results suggest that CFG1 expression may be controlled by a post-transcriptional gene silencing mechanism that is associated with coding-region (RT domain) methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LTR:

Long terminal repeat

ORF:

Open reading frame

GAG:

Group-specific antigen

POL:

Polyprotein

PR:

Protease

RT:

Reverse transriptase

RH:

RNase H

IN:

Integrase

IR:

Inverted repeat

PBS:

Primer binding site

PPT:

Polypurine tract

UGW:

Universal GenomeWalkerTM

AFLP:

Amplified fragment length polymorphism

NJ:

Neighbor-joining

RT-PCR:

Reverse transcriptase-polymerase chain reaction

IAP:

Intracisternal A particle

PTGS:

Post-transcriptional gene silencing

References

  • Arkhipova I, Meselson M (2000) Transposable elements in sexual and ancient taxa. Proc Natl Acad Sci USA 97:14473–14477

    Article  PubMed  CAS  Google Scholar 

  • Boeke JD, Corces VG (1989) Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43:403–434

    Article  PubMed  CAS  Google Scholar 

  • Bowen NJ, McDonald JG (1999) Genomic analysis of Caenorhabditis elegans reveals ancient families of retrovirus-like elements. Genome Res 9:924–935

    Article  PubMed  CAS  Google Scholar 

  • Capy P, Vitalis R, Langin T, Higuet D, Bazin C (1996) Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J Mol Evol 42:359–368

    Article  PubMed  CAS  Google Scholar 

  • Depicker A, van Montagu M (1997) Post-transcriptional gene silencing in plants. Curr Opin Cell Biol 9:372–382

    Article  Google Scholar 

  • English JJ, Mueller E, Baulcombe DC (1996) Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8:179–188

    Article  PubMed  CAS  Google Scholar 

  • Gaffney PM, Pierce JC, Mackinley AG, Titchen DA, Glenn WK (2003) Pearl, a novel family of putative transposable elements in Bivalve mollusks. J Mol Evol 56:308–316

    Article  PubMed  CAS  Google Scholar 

  • Gorelick RJ, Henderson LE, Hanser JP, Rein A (1988) Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a “zinc finger-like” protein sequence. Proc Natl Acad Sci USA 85:8420–8424

    Article  PubMed  CAS  Google Scholar 

  • Green LM, Berg JM (1989) A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions: Spectroscopic studies and a proposed three-dimensional structure. Proc Natl Acad Sci USA 86:4047–4051

    Article  PubMed  CAS  Google Scholar 

  • Havecker ER, Gao X, Voytas DF (2004) The diversity of LTR retrotransposons. Genome Biol 5:225

    Article  PubMed  Google Scholar 

  • Hu X, Bao Z, Hu J, Shao M, Zhang L, Bi K, Zhan A, Huang X (2006) Cloning and characterization of tryptophan 2,3-dioxygenase gene of Zhikong scallop Chlamys farreri (Jones and Preston 1904). Aquac Res 37:1187–1194

    Article  CAS  Google Scholar 

  • Ingelbrecht I, van Houdt H, van Montagu M, Depicker A (1994) Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc Natl Acad Sci USA 91:10502–10506

    Article  PubMed  CAS  Google Scholar 

  • Jentoft JE, Smith LM, Fu X, Johnson M, Leis J (1988) Conserved cysteine and histidine residues of the avian myeloblastosis virus nucleocapsid protein are essential for viral replication but are not “zinc-binding fingers”. Proc Natl Acad Sci USA 85:7094–7098

    Article  PubMed  CAS  Google Scholar 

  • Kazazian HH Jr. (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Laha T, Loukas A, Verity CK, McManus DP, Brindley PJ (2001) Gulliver, a long terminal repeat retrotransposon from the genome of the oriental blood fluke Schistosoma japonicum. Gene 264:59–68

    Article  PubMed  CAS  Google Scholar 

  • Laha T, Loukas A, Smyth DJ, Copeland CS, Brindley PJ (2004) The fugitive LTR retrotransposon from the genome of the human blood fluke, Schistosoma japonicum. Int J Parasitol 34:1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73:5186–5189

    PubMed  CAS  Google Scholar 

  • McDonald JF (1995) Transposable elements: possible catalysts of organismic evolution. Trends Ecol Evol 10:123–126

    Article  Google Scholar 

  • Michaille J-J, Mathavan S, Gaillard J, Garel A (1990) The complete sequence of mag, a new retrotransposon in Bombyx mori. Nucleic Acids Res 18:674

    Article  PubMed  CAS  Google Scholar 

  • Pearl LH, Taylor WR (1987) A structural model for the retroviral proteases. Nature 329:351–354

    Article  PubMed  CAS  Google Scholar 

  • Reese MG (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26:51–56

    Article  PubMed  CAS  Google Scholar 

  • Rose RR, Doolittle WF (1983) Molecular mechanisms of speciation. Science 220:157–162

    Article  PubMed  CAS  Google Scholar 

  • Sijen T, Wellink J, Hiriart JB, van Kammen A (1996) RNA-mediated virus resistance: Role of repeated transgenes and delineation of targeted regions. Plant Cell 8:2277–2294

    Article  PubMed  CAS  Google Scholar 

  • Springer MS, Davidson EH, Britten RJ (1991) Retroviral-like element in a marine invertebrate. Proc Natl Acad Sci USA 88:8401–8404

    Article  PubMed  CAS  Google Scholar 

  • Springer MS, Britten RJ (1993) Phylogenetic relationships of reverse transcriptase and RNaseH sequences and aspects of genome structure in the gypsy group of retrotransposons. Mol Biol Evol 10:1370–1379

    PubMed  CAS  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • van den Boogaart T, Lomonossoff GP, Davies JW (1998) Can we explain RNA-mediated virus resistance by homology-dependent gene silencing? Mol Plant-Microbe Interact 11:717–723

    Article  Google Scholar 

  • van Houdt H, Ingelbrecht I, van Montagu M, Depicker A (1997) Post-transcriptional silencing of a neomycin phospho-transferase II transgene correlates with the accumulation of unproductive RNAs and with increased cytosine methylation of 3′ flanking regions. Plant J 12:379–392

    Article  Google Scholar 

  • Volff J-N, Korting C, Altschmied J, Duschl J, Sweeney K, Wichert K, Froschauer A, Schartl M (2001) Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag family. Mol Biol Evol 18:101–111

    PubMed  CAS  Google Scholar 

  • Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20:116–117

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    PubMed  CAS  Google Scholar 

  • Zhang L, Bao Z, Cheng J, Li H, Huang X, Wang S, Zhang C, Hu J (2007) Fosmid library construction and initial analysis of end sequences in Zhikong scallop (Chlamys farreri). Mar Biotechnol. doi:10.1007/s10126-007-9014-4

Download references

Acknowledgements

This work was supported by grants from The National High Technology Research and Development Program of China (2006AA10A408; 20060110A4013), a Specialized Research Fund for the Doctoral Program of Higher Education (20060423015), and “NCET-06-0594”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenmin Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Bao, Z., Hu, X. et al. Two novel elements (CFG1 and PYG1) of Mag lineage of Ty3/Gypsy retrotransposons from Zhikong scallop (Chlamys farreri) and Japanese scallop (Patinopecten yessoensis). Genetica 133, 37–46 (2008). https://doi.org/10.1007/s10709-007-9180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-007-9180-3

Keywords

Navigation