Skip to main content
Log in

An Investigation into the Rock Properties Influencing the Strength in Some Granitoid Rocks of KwaZulu-Natal, South Africa

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

The uniaxial compressive strength (UCS) of rocks is a critical parameter required for most geotechnical projects. However, it is not always possible for direct determination of the parameter. Since determination of such a parameter in the lab is not always cost and time effective, the aim of this study is to assess and estimate the general correlation trend between the UCS and indirect tests or indexes used to estimate the value of UCS for some granitoid rocks in KwaZulu-Natal. These tests include the point load index test, Schmidt hammer rebound, P-wave velocity (Vp) and Brazilian tensile strength (σt). Furthermore, it aims to assess the reliability of empirical equations developed towards estimating the value of UCS and propose useful empirical equations to estimate the value of UCS for granitoid rocks. According to the current study, the variations in mineralogy, as well as the textural characteristics of granitoid rocks play an important role in influencing the strength of the rock. Simple regression analyses exhibit good results, with all regression coefficients R2 being greater than 0.80, the highest R2 of 0.92 being obtained from UCS versus σt. Comparison of equations produced in the current study as well as empirical equations derived by several researchers serves as a validation. Also illustrate that the reliability of such empirical equations are dependent on the rock type as well as the type of index tests employed, where variation in rock type and index tests produces different values of UCS. These equations provide a practical tool for estimating the value of UCS, and also gives further insight into the controlling factors of the strength of the granitoid rocks, where the strength of a rock is a multidimensional parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akesson U, Hansson J, Stigh J (2004) Characterization of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading. Eng Geol 72:131–142

    Article  Google Scholar 

  • Altindag R (2012) Correlation between P-wave velocity and some mechanical properties for sedimentary rocks. J South Afr Inst Min Metall 112:229–237

    Google Scholar 

  • Armaghani DJ, Mohamad ET, Momeni E, Monjezi M, Narayanasamy MS (2016) Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab J Geosci 9(1):1–16

    Article  Google Scholar 

  • Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Eng Geol 81:1–14

    Article  Google Scholar 

  • Azadan P, Ahangari K (2013) Evaluation of the new dynamic needle penetrometer in estimating uniaxial compressive strength of weak rocks. Arab J Geosci. doi:10.1007/s12517-013-0921-6

    Google Scholar 

  • Azimian A, Ajalloeian R, Fatehi L (2013) An empirical correlation of uniaxial compressive strength with P-wave velocity and point load strength index on marly rocks using statistical method. Geotech Geol Eng 32(1):205–214

    Article  Google Scholar 

  • Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–236

    Article  Google Scholar 

  • Basu A, Aydin A (2006) Predicting uniaxial compressive strength by point load test: significance of cone penetration. Rock Mech Rock Eng 39:483–490

    Article  Google Scholar 

  • Basu A, Kamran M (2010) Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength. Int J Rock Mech Min Sci 47(5):823–828. doi:10.1016/j.ijrmms.2010.04.006

    Article  Google Scholar 

  • Basu A, Celestino B, Bortolucci A (2009) Evaluation of rock mechanical behaviours under uniaxial compression for different weathering grades. Rock Mech Rock Eng 42:73–93

    Article  Google Scholar 

  • Basu A, Ghosh N, Das M (2012) Categorizing weathering grades of quartzitic materials and assessing Brazilian tensile strength with reference to assigned grades. Int J Rock Mech Min Sci 49:148–155

    Article  Google Scholar 

  • Basu A, Mishra A, Roychowdhury K (2013) Rock failure modes under uniaxial compression, Brazilian, and point load tests. Bull Eng Geol Environ 72:457–475

    Article  Google Scholar 

  • Bell FG (1987) Engineering properties of soils and rocks. Butterworths, London

    Google Scholar 

  • Bell FG (1992) Engineering in rock masses. Butterworth Heinemann, London. ISBN 0750619651

    Google Scholar 

  • Beverly BE, Schoenwolf DA, Brierly GS (1979) Correlation of rock index values with engineering properties and the classification of intact rock. Federal Highway Administration, Waschington DC

  • Bewick P, Amann F, Kaiser K, Martin D (2015) Interpretation of UCS test results for engineering design. ISRM congress 2015 proceedings—Int’l symposium on rock mechanics. ISBN: 978-1-926872-25-4

  • Bieniawski ZT (1967) Mechanism of brittle fracture of rock, parts I, II, III. Int J Rock Mech Min Sci 4(4):395–430

    Article  Google Scholar 

  • Bieniawski ZT (1968) The effect of specimen size on compressive strength of coal. Int J Rock Mech Min Sci 5:325–335

    Article  Google Scholar 

  • Bieniawski ZT (1975) Estimating the strength of rockmaterials. J South Afr Inst Min Metall 74(8):312–320

  • Bieniawski ZT (1989) Rock mass classification in rock engineering. In: Bieniawski ZT (ed) Exploration for rock engineering. Balkema, Cape Town, pp 97–106

    Google Scholar 

  • Bradford IDR, Fuller J, Thompson PJ, Walsgrove TR (1998) Benefits of assessing the solids production risk in a North Sea reservoir using elastoplastic modeling. SPE/ISRM Eurock ‘98 held in Trondheim, Norway, 8–10 July, 1998, pp 261–269

  • Broch E, Franklin JA (1972) The point load strength test. Int J Rock Mech Min Sci 28:669–697

    Article  Google Scholar 

  • Brook N (1985) The equivalent core diameter method of size and shape correction in point load testing. Int J Rock Mech Min Sci Geomech Abstr 22(2):61–70. doi:10.1016/0148-9062(85)92328-9

    Article  Google Scholar 

  • Brown ET (1981) Rock characterisation, testing and monitoring: ISRM methods. Pergamon Press Ltd, Oxford, pp 55–70

    Google Scholar 

  • Brown ET, Hoek E (1980) Empirical strength criterion for rock masses. J Geotech Eng Div 1013–1035

  • Cai M (2010) Practical estimates of tensile strength and Hoek–Brown strength parameter mi of brittle rocks. Rock Mech Rock Eng 43:167–184

    Article  Google Scholar 

  • Cargill JS, Shakoor A (1990) Evaluation of empirical methods for measuring the uniaxial compressive strength of rock. Int J Rock Mech Min Sci Geomech Abstr 27:495–503

    Article  Google Scholar 

  • Chau KT, Wong RHC (1996) Uniaxial compressive strength and point load strength. Int J Rock Mech Min Sci Geomech Abstr 33:183–188

    Article  Google Scholar 

  • Cobanglu I, Çelik S (2008) Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull Eng Geol Environ 67:491–498

    Article  Google Scholar 

  • Colwell M, Frith R (2006) Why uniaxial compressive strength and young’s modulus are commonly poor indicators of roadway roof stability—except in the tailgate. In: Aziz N (ed) Coal 2006: coal operators’ conference. University of Wollongong & the Australasian Institute of Mining and Metallurgy, pp 28–43

  • D’Andrea DV, Fisher RL, Fogelson DE (1964) Prediction of compression strength from other rock properties. Colo Sch Mines Q 59(4B):623–640

    Google Scholar 

  • Deere DU (1968) In: Stagg KG, Zienkiewicz OC (eds) Rock mechanics in engineering practice. Wiley, London, pp 1–20

    Google Scholar 

  • Deere DU, Miller RP (1964) Engineering classification and index properties for intact rock. Air Force Weapons Lab, Tech Report, AFWL-TR

  • Deere DU, Miller RP (1966) Engineering classification and index properties for intact rocks (Technical Report No. AFNL-TR- 65-116). Air Force Weapons Laboratory, New Mexico

  • Dehghan S, Sattari GH, Chehre Chelgani S, Aliabadi MA (2010) Prediction of uniaxial compressive and modulus of elasticity for travertine sample using regression and artificial neural networks. Min Sci Technol 20:41–46

    Google Scholar 

  • Diamantis K, Gartzos E, Migiros G (2009) Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: test results and empirical relations. Eng Geol 108:199–207

    Article  Google Scholar 

  • Diamantis K, Bellas S, Migiros G, Gartzos E (2011) Correlating wave velocities with physical, mechanical properties and petrographic characteristics of peridotites from the central Greece. Geotech Geol Eng 29(6):1049–1062

    Article  Google Scholar 

  • Entwisle DC, Hobbs PRN, Jones LD, Gunn D, Raines MG (2005) The relationship between effective porosity, uniaxial compressive strength and sonic velocity of intact Borrowdale Volcanic Group core samples from Sellafield. Geotech Geol Eng 23:793–809

    Article  Google Scholar 

  • Ersoy H, Kanik D (2012) Multicriteria decision-making analysis based methodology for predicting carbonate rocks’ uniaxial compressive strength. Earth Sci Res J 16(1):65–74

    Google Scholar 

  • Farah R (2011) Correlations between index properties and unconfined compressive strength of weathered Ocala Limestone. UNF thesis and dissertations. Paper 142

  • Fener M, Kahraman S, Bilgil A, Gunaydin O (2005) A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech Rock Eng 38(4):329–334

    Article  Google Scholar 

  • Forster IR (1983) The influence of core sample geometry on the axial point-load test. Int J Rock Mech Miner Sci Geomech Abstr 20:291–295

    Article  Google Scholar 

  • Freyburg E (1972) Der untere trod mittlere Buntsandstein SW Thiiringens in seinen gesteinstechnischen Eigenschatten. Ber Dte Ges Geol Wiss A 17:911–919

    Google Scholar 

  • Ghose AK, Chakraborti S (1986) Empirical strength indices of Indian coals—an investigation. In: Proceedings of the 27th US symposium on rock mechanics, Balkema, Rotterdam, pp 59–61

  • Ghosh DK, Srivastava M (1991) Point-load strength: an index for classification of rock material. Bull Eng Geol Environ 44:27–33

    Google Scholar 

  • Goktan RM (1988) Theoretical and practical analysis of rock rippability. Ph.D. thesis, Istanbul Technical University

  • Golubev A, Rabinovich GJ (1976) Resultaty primenenia apparatury akusticeskogo karotasa dlja predelenia procnostych svoistv gornych porod na mestorosdeniach tverdych iskopaemych. Prikladnaja Geofizika Moskva 73:109–116

    Google Scholar 

  • Grasso P, Xu S, Mahtab A (1992) Problems and promises of index testing of rocks. Rock Mech, Balkema, pp 879–888

    Google Scholar 

  • Gunsallus KL, Kulhawy FH (1984) A comparative evaluation of rock strength measures. Int J Rock Mech Min Sci Geomech Abstr 21:233–248

    Article  Google Scholar 

  • Haramy KY, De Marco MJ (1985) Use of Schmidt hammer for rock and coal testing. Use of Schmidt hammer for rock and coal testing. In: Proceedings of 26th US symposium on rock mechanics; 26–28 June, Rapid City, South Dakota. American Rock Mechanics Association, Balkema, Rotterdam, pp 549–555

  • Hassani FP, Scoble MJ, Whittaker BN (1980) Application of point load index test to strength determination of rock and proposals for new size-correction chart. In: Summers DA (ed) Proceedings of the 21st US symposium on rock mechanics. University of Missouri Press, Rolla, pp 543–564

    Google Scholar 

  • Heidari M, Khanlari GR, Torabi Kaveh M, Kargarian S (2011) Predicting the uniaxial compressive and tensile strengths of gypsum rock by point load testing. Rock Mech Rock Eng 45:265–273. doi:10.1007/s00603-011-0196-8

    Article  Google Scholar 

  • Hoek E, Brown ET (1980) Empirical Strength Criterion for rock mass. Journal of Geotechnical Engineering Division, vol. 106. Proceedings of the American Society of Civil Engineers

  • Hoek E, Diederichs MS (2006) Empirical estimation of rock mass modulus. Int J Rock Mech Min Sci 43(2):203–215

    Article  Google Scholar 

  • Horsrud P (2001) Estimating mechanical properties of shale from empirical correlations. SPE Drill Complet 16:68–73

    Article  Google Scholar 

  • Hudson JA, Brown ET, Fairhurst C (1971) Shape of the complete stress strain curve for rock. In: Proceedings (13th) symposium on rock mechanic. University of Illinois, Urbana

  • ISRM (1985a) Suggested method for determining point load strength. Int J Rock Mech Min Sci Geomech Abstr 22(2):53–60

    Google Scholar 

  • ISRM (1985b) Suggested method for determining point load strength. Int J Rock Mech Min Sci Geomech Abstr 22:51–60

    Article  Google Scholar 

  • ISRM (2007) The complete ISRM Suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics, ISRM Turkish National Group, Ankara, p 628

  • Jaeger JC, Cook NGW, Zimmerman R (2007) Fundamentals of rock mechanics. Wiley, Malden, p 335

    Google Scholar 

  • Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994

    Article  Google Scholar 

  • Kahraman S (2012) Predicting the compressive and tensile strength of rocks from indentation hardness. Index. J South Afr Inst Min Metall 112(5):331–339

    Google Scholar 

  • Kahraman S, Gunaydin O (2009) The effect of rock classes on the relation between uniaxial compressive strength and point load index. Bull Eng Geol Environ 68(3):345–353

    Article  Google Scholar 

  • Kahraman S, Gunaydin O, Fener M (2006) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42(4):584–589. doi:10.1016/j.ijrmms.2005.02.004

    Article  Google Scholar 

  • Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42(4):584–589. doi:10.1016/j.ijrmms.2005.02.00

  • Karaman K, Kesimal A (2012) Kayaçların tek eksenli basınç dayanımı tahmininde nokta yükü deney yöntemleri ve porozitenin değerlendirilmesi. Madencilik 51(4):3–14 (in Turkish)

    Google Scholar 

  • Katz O, Reches Z, Roegıers JC (2000) Evaluation of mechanical rock properties using a Schmidt hammer. Int J Rock Mech Min Sci 37:723–728

    Article  Google Scholar 

  • Khandelwal M (2013) Correlating P-wave velocity with the physico-mechanical properties of different rocks. Pure appl Geophys. doi:10.1007/s00024-012-0556-7

    Google Scholar 

  • Khandelwal M, Ranjith PG (2010) Correlating index properties of rocks with P-wave measurements. J Appl Geophys 71:1–5

    Article  Google Scholar 

  • Khandelwal M, Singh TN (2009) Correlating static properties of coal measures rocks with p-wave velocity. Int J Coal Geol 79:55–60

    Article  Google Scholar 

  • Kılıc A, Teymen A (2008) Determination of mechanical properties of rocks using simple methods. Bull Eng Geol Environ 67(2):237–244. doi:10.1007/s10064-008-0128-3

    Article  Google Scholar 

  • Kurtulus G, Irmak T, Sertcelik I (2011) Physical and mechanical properties of Gokcseda: Imbros (NE Aegean Sea) Island andesites. Bull Eng Geol Environ 69:321–324

    Article  Google Scholar 

  • Le Bas MJ, Streckeisen AL (1991) The IUGS systematics of igneous rocks. J Geol Soc 148:825–833

  • Maji VB (2011) Understanding failure mode in uniaxial and triaxial compression for a hard brittle rock. In: Proceedings of the 12th ISRM international congress on rock mechanics. CRC Press, Balkema, Leiden, pp 723–726

  • Matthews PE (1972) Possible pre-Cambrian obduction and plate tectonics in southeastern Africa. Nature 240:37–39

    Article  Google Scholar 

  • Matthews PE (1985) Archaean post-Pongola granites in the southeastern Kaapvaal Craton. S Afr J Sci 81:479–484

    Google Scholar 

  • McNally GH (1987) Estimation of coal measures rock strength using sonic and neutron logs. Geoexploration 24:381–395

    Article  Google Scholar 

  • Militzer H, Stoll R (1973) Einige Beitraige der Geophysik zur primadatenerfassung im Bergbau. Neue Bergbautechnik 3:21–25

    Google Scholar 

  • Minaeian B, Ahangari K (2011) Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arab J Geosci. doi:10.1007/s12517-011-0460-y

    Google Scholar 

  • Momeni E, Jahed Armaghani D, Hajihassani M, Amin MFM (2015) Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60:50–63

    Article  Google Scholar 

  • Moomivand H (2011) Development of a new method for estimating the indirect uniaxial compressive strength of rock using Schmidt hammer. BHM 156(4):142–146. doi:10.1007/s00501-011-0644-5

    Google Scholar 

  • Moradian Z, Behnia M (2009) Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. Int J Geomech 9(1):14–19

    Article  Google Scholar 

  • Nesse W (2009) Introduction to mineralogy. Oxford University, New York, pp 92–98

    Google Scholar 

  • Norbury DR (1986) The point load test. In: Hawkins AB (ed) Site investigation practice: accessing BS 5930. Geological Society, London, pp 325–329

    Google Scholar 

  • Ozcelik Y, Bayram F, Yasitli NE (2013) Prediction of engineering properties of rocks from microscopic data. Arab J Geosci 6:3651–3668

    Article  Google Scholar 

  • Quane SL, Russel JK (2003) Rock strength as a metric of welding intensity in pyroclastic deposits. Eur J Mineral 15:855–864

    Article  Google Scholar 

  • Sammis CG, Ashby MF (1986) The failure of brittle porous solids under compressive stress state. Acta Metall 30:511–526

    Article  Google Scholar 

  • Santarelli FJ, Brown ET (1989) Failure of three sedimentary rocks in triaxial and hollow cylinder compression tests. Int J Rock Mech Min Sci Geomech Abstr 26:401–413

    Article  Google Scholar 

  • Sarkar K, Vishal V, Singh TN (2012) An empirical correlation of index geomechanical parameters with the compressional wave velocity. Geotech Geol Eng. doi:10.1007/s10706-011-9481-2

    Google Scholar 

  • Selçuk L, Yabalak E (2015) Evaluation of the ratio between uniaxial compressive strength and Schmidt hammer rebound number and its effectiveness in predicting rock strength. Nondestruct Test Eval 30(1):1–12. doi:10.1080/10589759.2014.977789

    Article  Google Scholar 

  • Shalabi F, Cording EJ, Al-Hattamleh OH (2007) Estimation of rock engineering properties using hardness tests. Eng Geol 90:138–147

    Article  Google Scholar 

  • Sharma PK, Singh TN (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67:17–22

    Article  Google Scholar 

  • Sharma PK, Singh TN (2010) Reply to discussion by N Arıoglu, G Kurt and E Arıoglu. doi:10.1007/s10064-0100261-7 on the paper entitled “A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength” by PK Sharma, TN Singh, Bull Eng Geol Environ

  • Sharma PK, Khandelwal M, Singh TN (2011) A correlation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity. Int J Earth Sci (Geol Rundsch) 100:189–195

    Article  Google Scholar 

  • Singh DP (1981) Determination of some engineering properties of weak rocks. In: IAkai K (ed) Proceedings of the international symposium weak rock. Balkema, Rotterdam, pp 21–24

  • Singh VK, Singh DP (1993) Correlation between point load index and compressive strength for quartzite rocks. Geotech Geol Eng 11:269–272

    Article  Google Scholar 

  • Singh RN, Hassani FP, Elkington PAS (1983) The application of strength and deformation index testing to the stability assessment of coal measures excavations. In: Proceedings of the 24th US symposium on rock mechanics, College Station, TX, USA, 20–23 June 1983, pp 599–609

  • Singh TN, Kainthola A, Venkatesh A (2013) Correlation between point load index and uniaxial compressive strength for different rock types. Rock Mech Rock Eng 45(2):59–64

    Google Scholar 

  • Sousa O (2014) Petrophysical properties and durability of granites employed as building stone: a comprehensive evaluation. Bull Eng Geol Environ 73:569–588

    Article  Google Scholar 

  • Sousa LMO, Del Rio LMS, Calleja L, de Argandona VGR, Rey AR (2005) Influence of microfraetures and porosity on the physieo-meehanieal properties and weathering of ornamental granites. Eng Geol 77:153–168

    Article  Google Scholar 

  • Szwedzicki TA (2007) A hypothesis on modes of failure of rock samples tested in uniaxial compression. Technical note. Rock Mech Rock Eng 40:97–104

    Article  Google Scholar 

  • Tandon RS, Gupta V (2013) The control of mineral constituents and textural characteristics on the petrophysical and mechanical (PM) properties of different rocks of the Himalaya. Eng Geol 153:125–143

    Article  Google Scholar 

  • Tandon RS, Gupta V (2015) Estimation of strength characteristics of different Himalayan rocks from Schmidt hammer rebound, point load index, and compressional wave velocity. Bull Eng Geol Environ 74:521–533

    Article  Google Scholar 

  • Torabi SR, Shirazi H, Hajali H, Monjezi M (2013) Study of the influence of geotechnical parameters on the TBM performance in Tehran—Shomal highway project using ANN and SPSS. Arab J Geosci 6:1215–1227

    Article  Google Scholar 

  • Torabi-Kaveh M, Naseri F, Saneie F, Sarshari B (2014) Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Saudi Soc Geosci 8(1):2889–2897

    Google Scholar 

  • Tsiambaos G, Sabatakakis N (2004) Considerations on strength of intact sedimentary rocks. Eng Geol 72:261–273

    Article  Google Scholar 

  • Tsidzi K (1991) Point load-uniaxial compressive strength correlation. In: Wittke W, Balkema (eds) Proceedings of the 7th ISRM congress, vol 1. Rotterdam, pp 637–639

  • Tugrul A, Zariff IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51:303–317

    Article  Google Scholar 

  • Ulusay R, Tureli K, Ider MH (1994) Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Eng Geol 37:135–157

    Article  Google Scholar 

  • Vasconcelos G, Lourenco PB, Alves CSA, Pamplona J (2007) Prediction of the mechanical properties of granites by ultrasonic pulse velocity and Schmidt hammer hardness. In: Proceedings, 10th North American Masonry Conference, pp 981–991

  • Yagiz S (2009) Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull Eng Geol Environ 68:55–63

    Article  Google Scholar 

  • Yagiz S (2011) P-wave velocity test for assessment of geotechnical properties of some rock materials. Bull Mater Sci 34(4):947–953

    Article  Google Scholar 

  • Yasar E, Erdogan Y (2004) Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. Int J Rock Mech Min Sci 41(5):871–875

    Article  Google Scholar 

  • Yesiloglu-Gultekin N, Sezer EA, Gokceoglu C, Bayhan H (2013) An application of Adaptive neuro fuzzy inference system for estimating the uniaxial compressive strength of certain granitic rocks from their mineral contents. Expert Syst Appl 40(3):921–928

    Article  Google Scholar 

  • Yilmaz I, Sendir H (2002) Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Eng Geol 66:211–219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ferentinou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakir, M., Ferentinou, M. & Misra, S. An Investigation into the Rock Properties Influencing the Strength in Some Granitoid Rocks of KwaZulu-Natal, South Africa. Geotech Geol Eng 35, 1119–1140 (2017). https://doi.org/10.1007/s10706-017-0168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-017-0168-1

Keywords

Navigation