Skip to main content

Advertisement

Log in

Net ecosystem CO2 exchange and carbon cycling in tropical lowland flooded rice ecosystem

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The seasonal fluxes of CO2 and its characteristics with relation to environmental variables were investigated under tropical lowland flooded rice paddies employing the open path eddy covariance technique. The seasonal net ecosystem carbon budget was quantified by empirical modelling approach. The integrated net ecosystem exchange (NEE), gross primary production (GPP) and ecosystem respiration (RE) in the flooded rice field was −448, 811 and 363 g C m−2 in wet season. Diurnal variations of mean NEE values during the season varied from +3.99 to −18.50 μmol CO2 m−2 s−1. The daily average NEE over the cropping season varied from +2.73 to −7.74 g C m−2 day−1. The net ecosystem CO2 exchange reached its maximum in heading to flowering stage of rice with an average value of −5.67 g C m−2 day−1. On daily basis the flooded rice field acted as a net sink for CO2 during most of the times in growing season except few days at maturity when it became a net CO2 source. The rate of CO2 uptake by rice as observed from negative NEE values increased proportionally with air temperature up to 34 °C. The carbon distribution in different component of soil-plant system namely, soil organic carbon, dissolved organic carbon, methane emission, rhizodeposition, carbon in algal biomass, crop harvest and residues were quantified and carbon balance sheet was prepared for the wet season in tropical rice. Carbon balance sheet for tropical rice revealed 7.12 Mg C ha−1 was cycled in the system in wet season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberto RCM, Wassmann R, Hirano T, Miyata A, Kumar A, Padre A, Amante M (2009) CO2/heat fluxes in rice fields: comparative assessment of flooded and non-flooded fields in the Philippines. Agric For Meteorol 149:1737–1750

    Article  Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik U, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer CH, Clement R, Elbers J, Granier A, Grunwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 102:113–175

    Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystem: past, present and future. Glob Change Biol 9:479–492

    Article  Google Scholar 

  • Barker JM, Griffis TJ (2005) Examining strategies to improve the carbon balance of corn/soyabean agriculture is using eddy covariance and mass balance techniques. Agric For Meteorol 128:163–177

    Article  Google Scholar 

  • Bhattacharyya P, Roy KS, Neogi S, Adhya TK, Rao KS, Manna MC (2012a) Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice. Soil Till Res 124:119–130

    Article  Google Scholar 

  • Bhattacharyya P, Roy KS, Neogi S, Chakravorti SP, Behera KS, Das KM, Bardhan S, Rao KS (2012b) Effect of long term application of organic amendment on C storage in relation to global warming potential and biological activities in tropical flooded soil planted to rice. Nutr Cyc Agroecosyst. doi:10.1007/s10705-012-9540-y

    Google Scholar 

  • Black K, Bolger T, Darvis P, Nieuwenhuis M, Reidy B, Saiz G, Tobin B, Osborne B (2007) Inventory and eddy covariance-based estimates of annual carbon sequestration in a Sitka spruce (Picea sitchensis (Bong.) Carr.) forest ecosystem. Eur J For Res 126:167–178

    Article  CAS  Google Scholar 

  • Carrara A, Kowalsk AS, Neirynck J, Janssens IA, Yuste JC, Ceulemans R (2003) Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agric For Meteorol 119:209–227. doi:10.1016/S0168-1923(03).00120-5

    Article  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97(24):13430–13435

    Article  PubMed  CAS  Google Scholar 

  • Datta A, Nayak DR, Sinhababu DP, Adhya TK (2009) Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of Eastern India. Agric Ecosyst Environ 129:228–237

    Article  CAS  Google Scholar 

  • Falge E, Baldochhi D, Olso R (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69

    Article  Google Scholar 

  • Goulden ML, Miller SD, da Rocha HR, Menton MC, de Freitas HC, Figueira AMS, de Sousa CAD (2004) Diel and seasonal patterns of tropical forest CO2 exchange. Ecol Appl 14(4):S42–S54

    Article  Google Scholar 

  • Hossen MS, Baten MA, Khatun R, Khan MB, Mano M, Ono K, Miyata A (2007) Establishment of a flux study site in Bangladesh with its preliminary observation result. AsiaFlux Newsletter (special issue)

  • Hossen MS, Hiyama T, Tanaka H (2010) Estimation of nighttime ecosystem respiration over a paddy field in China. Biogeosci Discuss 7:1201–1232

    Article  Google Scholar 

  • Hossen MS, Mano M, Miyata A, Baten MA, Hiyama T (2011) Seasonality of ecosystem respiration in a double-cropping paddy field in Bangladesh. Biogeosci Discuss 8:8693–8721.

    Google Scholar 

  • Huxman TE, Cable JM, Ignance DD, Eilts JA, English NB, Weltzin J, Williams DG (2004) Response of net ecosystem gas exchange to a simulated precipitation pulse in semi-arid grassland: the role of native versus non-native grasses and soil texture. Oecologia 141:295–305

    PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jarvis PG, Leverenz JW (1983) Productivity of temperate, deciduous and evergreen forests. In: Land OL, Nobel PS, Osmond CB, Ziegler H (eds) Ecosystem processes: mineral cycling, productivity and man's influence. Physiological plant ecology: new series, vol 12D. Springer, New York, pp. 233–280

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows. Oxford University Press, New York, p 289

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Mahrt L, Vickers D (2002) Relationship of area-averaged carbon dioxide and water vapour fluxes to atmospheric variables. Agric For Meteorol 112:195–202. doi:10.1016/S0168-1923(02)00076-5

    Article  Google Scholar 

  • Mandal B, Majumdar B, Adhya TK, Bandyopadhyay PK, Gangopadhyay A, Sarkar D, Kundu MC, Choudhyry SG, Hazra GC, Kundu S, Samantaray RN, Mishra AK (2008) Potential of double-cropped rice ecology to conserve organic carbon under subtropical climate. Glob Change Biol 14:2139–2151

    Article  Google Scholar 

  • Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric For Meteorol 113:121–144

    Article  Google Scholar 

  • Matos MC, Matos AA, Mantas A, Cordeiro V, Vieira DA, Silva JB (1998) Diurnal and seasonal changes in Prunus amygdalus gas exchanges. Photosynthetica 35:517–524

    Article  Google Scholar 

  • Miyata A, Leuning R, Denmead OW, Kim J, Harazano Y (2000) Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agric For Meteorol 102:287–303

    Article  Google Scholar 

  • Miyata A, Iwata T, Nagai H, Yamada T, Yoshikoshi H, Mano M, Ono K, Han GH, Harazano Y, Ohtaki E, Baten MA, Inohara S, Takimoto T, Saito M (2005) Seasonal variation of carbon dioxide and methane fluxes at single cropping paddy fields in Central and Western Japan. Phyton (Austria) 45:89–97

    CAS  Google Scholar 

  • Moon BK, Hong J, Lee BR, Yun JI, Park EW, Kim J (2003) CO2 and energy exchange in rice paddy for the growing season of 2002 in Hari, Korea. K J Agric For Meteorol 5:51–60

    Google Scholar 

  • Mowjood MIM, Ishiguro K, Kasubuchi T (1997) Effect of convection in ponded water on the thermal regime of a paddy field. Soil Sci 162(8):583–587

    Article  CAS  Google Scholar 

  • Pakoktom T, Aoki M, Kasemsap P, Boonyawat S, Attarod P (2009) CO2 and H2O fluxes ratio in paddy fields of Thailand and Japan. Hydrol Res Lett 3:10–13

    Article  Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3:571–583

    Article  CAS  Google Scholar 

  • Patel NR, Dadhwal VK, Saha SK (2011) Measurement and scaling of Carbon Dioxide (CO2) exchanges in wheat using flux-tower and remote sensing. J Ind Soc Remote Sensing. doi:10.1007/s12524-011-0107-1

    Google Scholar 

  • Potts DL, Huxman TE, Cable JM (2006) Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in semi-arid grassland. J Ecol 94:23–30

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmaov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439

    Article  Google Scholar 

  • Ruimy A, Jarvis PG, Baldocchi DD, Sauiger B (1995) CO2 fluxes over plant canopies and solar radiation: a review. Adv Ecol Res 26:1–81

    Article  Google Scholar 

  • Saigusa N, Yamamoto S, Muruyama S, Kondo H, Nishimura H (2002) Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agric For Meteorol 112:203–215. doi:10.1016/S0168-1923(02)00082-5

    Article  Google Scholar 

  • Saito M, Miyata A, Nagai H, Yamada T (2005) Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agric For Meteorol 135:93–109

    Article  Google Scholar 

  • Saitoh K, Ishihara K (1987) Effect of vapor pressure deficit on photosynthesis of rice leaves with reference to light and CO2 utilization efficiency. Jpn J Crop Sci 56(2):163–170 (in Japanese with English abstract)

    Article  CAS  Google Scholar 

  • Schmid HP, Grimmond BSC, Cropley F, Offcrle B, Su HB (2000) Measurements of CO2 and energy fluxes over a mixed hardwood forest in the mid-western United States. Agric For Meteorol 103:357–374

    Article  Google Scholar 

  • Schuepp SH, Leclerc MY, Macpherson JI, Desjardins RL (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary Layer Meteorol 42:167–180

    Google Scholar 

  • Smith P, Lanigan G, Kutsch WL, Buchmann N, Eugster W, Aubinet M, Ceschia E, Beziat P, Yeluripati JB, Osborne B, Moors EJ, Brut A, Wattenbach M, Saunders M, Jones M (2010) Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agric Ecosyst Environ 139:302–315. doi:10.1016/j.agee.2010.04.004

    Article  Google Scholar 

  • Sponseller RA (2007) Precipitation pulses and soil CO2 flux in a Sonoran desert ecosystem. Glob Change Biol 13:426–436

    Article  Google Scholar 

  • Tanner CB, Thurtell GW (1969) Anemoclinometer measurements of reynolds stress and heat transport in the atmospheric surface layer. University of Wisconsin Tech. Rep ECOM-66-G22-F, pp 82

  • Towprayoon S, Smakgahn K, Poonkaew S (2005) Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere 59:1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Tsai JL, Tsuang BJ, Lu PS, Yao MH, Hsieh HY (2006) Surface energy components, CO2 flux and canopy resistance from rice paddy in Taiwan. The 17th symposium on boundary layers and turbulence, 27th conference on agricultural and meteorology, and the 17th conference on biometeorology and aerobiology, 21–25, San Deigo, CA, USA

  • Tseng HK, Tsai LJ, Alagesan A, Tsuang JB, Yao HM, Kuo HP (2010) Determination of methane and carbon dioxide fluxes during the rice maturity period in Taiwan by combining profile and eddy covariance measurements. Agric For Meteorol 150:852–859

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J Royal Meteorol Soc 106:85–100

    Article  Google Scholar 

  • XiuE R, QinXue W, ChengLi T, JinShui W, KeLin W, YongLi Z, ZeJian L, Masataka W, GuoYoung T (2007) Estimation of soil respiration in a paddy ecosystem in the subtropical region of China. Chi Sci Bull 52:2722–2730

    Article  Google Scholar 

  • Zsolnay A (2003) Dissolved organic matter: artefacts, definitions, and functions. Geoderma 113:187–210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work has been partially supported by the grant of ICAR-NAIP, Component-4 (2031), project entitled “Soil organic carbon dynamics vis-à-vis anticipatory climatic changes and crop adaptation strategies”, ICAR-NICRA and CRRI. The suggestion given by Dr. D. C. Uprety, Dr. S. N. Singh, Dr. V. R. Rao and Dr. T. K. Adhya is gratefully acknowledged. Part of the result is the PhD work of Mr. Suvadip Neogi. Technical support was provided by the technical staffs of the Division of Crop Production, CRRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, P., Neogi, S., Roy, K.S. et al. Net ecosystem CO2 exchange and carbon cycling in tropical lowland flooded rice ecosystem. Nutr Cycl Agroecosyst 95, 133–144 (2013). https://doi.org/10.1007/s10705-013-9553-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-013-9553-1

Keywords

Navigation