Skip to main content

Advertisement

Log in

Modeling of nitric oxide emissions from temperate agricultural soils

  • Research Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Arable soils are a significant source of nitric oxide (NO), most of which is derived from nitrogen fertilizers. Accurate estimates of NO emissions from these soils are essential to devise strategies to mitigate the impact of agriculture on tropospheric ozone production and destruction. This paper presents the implementation of a soil NO emissions submodel within the environmentally-orientated soil-crop model, CERES-EGC. The submodel simulates NO production via the nitrification pathway, as modulated by soil environmental drivers. The resulting model was tested with data from 4 field experiments on wheat- and maize-cropped soils representative of two agricultural regions of France, over three years, and encompassing various climatic conditions. Overall, the model provided accurate predictions of NO emissions, but shortcomings arose from an inadequate vertical distribution of N fertilizer in the soil surface. Inclusion of a 2-cm thick topsoil layer in a ‘micro-layer’ version of CERES-EGC gave more realistic simulations of NO emissions and under-lying microbiological process. From a statistical point of view, both versions of the model achieved a similar fit to the experimental data, with respectively a MD and a RMSE ranging from 1.8 to 6.2 g N–NO ha−1d−1, and from 22.8 to 25.2 g N–NO ha−1d−1 across the 4 experiments. The cumulative NO losses represented 1–2% of NH +4 fertilizer applied in the case of maize crops, and about 1% in the case of wheat crops. The ‘micro-layer’ version may be used for spatialized inventories of NO emissions to improve air quality prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen SE, Hunt CM, Terman GL (1971) Nitrogen release from sulfur-coatedurea, as affected by coating weight, placement and temperature. Agron J 63:529–533

    Article  CAS  Google Scholar 

  • Aneja VP, Roelle PA, Li Y (2001) Effect of environmental variables on NO emissions from agricultural soils. Phyton 41: 27–38

    Google Scholar 

  • Blagodatskii SA, Kesik M, Papen H, Butterbach-Bahl K (2004) Nitrogen oxide and nitrous oxide production by the alcaligenes faecalis parafaecalis culture: the influence of ph and aeration. Eurasian Soil Sci 37:S107–S110

    Google Scholar 

  • Bosatta E, Iskandar IK, Juma NG, Kruh G, Reuss JO, Tanji KK, van Veen JA (1981) Status report on modelling of the processes soil microbiology. In Frissel MJ, van Veen JA (eds) Simulation of nitrogen behaviour of soil-plant systems. Pudoc, Wageningen, pp 38–44

    Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem Cycles 16(4):1058. doi: 10.1029/2001GB001811

  • Butterbach-Bahl K, Strange F, Papen H, Li C (2001) Regional inventory of nitric oxide and nitrous oxide emissions for forest soils of southeast germany using the biogeochemical model PnET-N-DNDC. J Geophys Res 106:34,155–34,166

    Article  CAS  Google Scholar 

  • Cortinovis J (2004) Etude expérimentale et modélisation des émissions biogéniques d’oxydes d’azote et d’isoprène depuis les écosystèmes naturels et aménagés: impact sur l’ozone. PhD thesis, Université Paul Sabatier

  • Davidson EA (1992) Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Sci Soc Am J 56(1):95–102

    Article  CAS  Google Scholar 

  • Davidson EA (1993) Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil. In: Oremland RS (ed) The biogeochemistry of global change: radiative trace gases. Chapman and Hall, New York, pp 369–386

    Google Scholar 

  • Davidson EA, Kingerlee W (1997) A global inventory of nitric oxide emissions from soils. Nutr Cycl Agroecosys 48:37–50

    Article  CAS  Google Scholar 

  • Davidson EA, Vitousek PM, Matson PA, Riley R, Garcia-Méndez G, Maass JM (1991) Soil emissions of nitric oxide in a seasonnally dry tropical forest of Mexico. J Geophys Res 96(D8):15439–15445

    CAS  Google Scholar 

  • Davidson EA, Keller M, Erickson HE, Verchot LV, Veldkamp E (2000) Testing a conceptual model of soil emissions of nitrous and nitric oxides. BioScience 50(8):667–680

    Article  Google Scholar 

  • Delmas R, Serça D, Jambert C (1997) Global inventory of NOx sources. Nutr Cycl Agroecosys 48:51–60

    Article  CAS  Google Scholar 

  • Driessen PM (1986) The water balance of soil. In: van Keulen H, Wolf J (eds) Modeling of agricultural production: weather, soils and crops. Pudoc, Wageningen, pp 76–116

    Google Scholar 

  • Dunfield PF, Knowles R (1999) Nitrogen monoxide production and consumption in an organic soil. Biol Fertil Soils 30:153–159

    Article  CAS  Google Scholar 

  • Focht DD, Verstraete W, Payne WJ (1978) Methods for analysis of denitrification in soils. In: Nielsen DR, Mc Donald JG (eds) Nitrogen in the Environment, volume 2, Soil-Plant-Nitrogen Relationships. Academic Press, New-York, pp 433–523

    Google Scholar 

  • Fortuna A, Harwood RR, Robertson GP, Fisk JW, Paul EA (2003) Seasonal changes in nitrification potentiel associated with application of n fertilizer and compost in maize systems of southwest michigan. Agric, Ecosyst Environ 97:285–293. doi: 10.1016/S0167-8809(02)00232–3

  • Gabrielle B, Menasseri S, Houot S (1995) Analysis and field-evaluation of the ceres models’ water balance component. Soil Sci Soc Am J 59:1402–1411

    Article  Google Scholar 

  • Gabrielle B, Roche R, Angas P, Cantero-Martinez C, Cosentino L, Mantineo M, Langensiepen M, Hénault C, Laville P, Nicoullaud B, Gosse G (2002) A priori parametrisation of the CERES soil-crop models and tests against several european data sets. Agronomie 22:25–38. doi: 10.1051/agro: 2002003

    Google Scholar 

  • Gabrielle B, Laville P, Hénault C, Nicoullaud B, Germon JC (2006) Simulation of nitrous oxide emissions from wheat-cropped soils using CERES. Nutr Cycl Agroecosys 74:133–146. doi: 10.1007/s10705-005-5771-5

    Google Scholar 

  • Gabrielle B, Laville P, Duval O, Nicoullaud B, Germon JC, Hénault C (2006b) Process-based modelling of nitrous oxide emissions from wheat-cropped soils at the sub-regional scale. Global Biogeochem Cycles 20:GB4018. doi: 10.1029/2006GB002686 https://hal.ccsd.cnrs.fr/ccsd-00017134

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vorosmarty CJ (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Garrido F, Hénault C, Gaillard H, Perez S, Germon JC (2002) N2O and NO emissions by agricultural soils with low hydraulic potentials. Soil Biol Biochem 34:559–575

    Article  CAS  Google Scholar 

  • Godde M, Conrad R (2000) Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture. Biol Fertil Soils 32:120–128

    Article  CAS  Google Scholar 

  • Godwin DC, Jones CA (1991) N dynamics in soil-plant systems. Modeling plant and soil systems, Agronomy Monograph 31:287–321

  • Hénault C, Bizouard F, Laville P, Gabrielle B, Nicoullaud B, Germon JC, Cellier P (2005) Predicting "in situ" soil N2O emission using a NOE algorithm and soil database. Glob Change Biol 11:115–127. doi: 10.1111/j.1365-2486.00879.x

    Google Scholar 

  • Hutchinson GL, Brams EA (1992) NO versus N2O emissions from an NH4+ amended bermuda grass pasture. J Geophys Res 97:9889–9896

    CAS  Google Scholar 

  • ISSS/ISRIC/FAO. (1998) World Reference Base for soil resources, volume 84 of World Soil Resources Rep. FAO, Rome

  • Jambert C, Serça D, Delmas R (1997) Quantification of N-losses as NH3, NO, and N2O and N2 from fertilized maize fields in southwestern France. Nutr Cycl Agroecosys 48:91–104

    Article  CAS  Google Scholar 

  • Jones C, Kiniry J (1986) CERES-N Maize: a simulation model of maize growth and development. Texas A&M University Press, College station

    Google Scholar 

  • Kesik M, Ambus P, Baritz R, Bruggemann N, Butterbach-Bahl K, Damm M, Duyser J, Horvath L, Kiese R, Kitzler B, Leip A, Li C, Pihlatie M, Pilegaard K, Seufert G, Simpson D, Skiba U, Smiatek G, Vesala T, Zechmeister-Boltensterm S (2005) Inventories of N2O and NO emissions from european forest soils. Biogeosciences 2:353–375

    Article  CAS  Google Scholar 

  • Kiese R, Li C, Hilbert DW, Papen H, Butterbach-Bahl K (2005) Regional application of PnET-N-DNDC for estimating the N2O source strength of tropical rainforests in wet tropics of australia. Glob Change Biol 11(1):128–144, doi: 10.1111/j.1365-2486.2004.00873.x

    Google Scholar 

  • Laville P, Hénault C, Gabrielle B, Serça D (2005) Measurement and modelling of NO fluxes on maize and wheat crops during their growing seasons: effect of crop management. Nutr Cycl Agroecosys 72:159–171. doi: 10.1007/s10705-005-0510-5

  • LeCadre E (2004) Modélisation de la volatilisation d’ammoniac en interaction avec les processus chimiques et biologiques du sol. PhD thesis, Institut National Agronomique Paris-Grignon, Ecole Doctorale ABIES

  • Li CS (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosys 58:258–276

    Article  Google Scholar 

  • Linn DM, Doran JW (1984) Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci Soc Am J 48:1667–1672

    Google Scholar 

  • Littlemore J, Ferguson KH, Saffigna PG (1992) Recovery of 15N labelled ammonium nitrate by fluecured tobacco growing on a sandy loam. Commun Soil Sci Plant Anal 23:1605–1615

    Article  CAS  Google Scholar 

  • Ludwig J, Meixner FX, Vogel B, Forstner J (2001) Soil-air exchange of nitric oxide: an overview of processes, environmental factors, and modeling studies. Biogeochemistry 52:225–257

    Article  CAS  Google Scholar 

  • Mahrt L, Pan H (1984) A two-layer model of soil hydrology. Boundary-Layer Meteorol 29:1–20

    Article  Google Scholar 

  • Martinez JE, Duchon CE, Crosson WL (2001) Effect of the number of soil layers on a modeled surface water budget. Water Resour Res 37:367–377

    Article  Google Scholar 

  • Mary B, Recous S (1995) Calcul des flux d’azote dans les sols par traçage isotopique 15 N. In: Maillard P, Bonhomme R (eds) Utilisation des isotopes stables pour l’étude du fonctionnement des plantes, vol 70. INRA Editions, Les Colloques, 16–17 décembre 1993, Paris (France), pp 277–297

  • McKenney DJ, Drury CF (1997) Nitric oxide production in agricultural soils. Glob Change Biol 3:317–326

    Article  Google Scholar 

  • Noilhan J, Mahfouf J-F (1996) The ISBA land surface parametrisation scheme. Glob Planet Change 13:145–159

    Article  Google Scholar 

  • Parton WJ, Holland EA, Del Grosso SJ, Hartman MD, Martin RE, Mosier AR, Ojima DS, Schimel DS (2001) Generalized model for NOx and N2O emissions from soils. J Geophys Res 106(D15):17403–17419

    Article  CAS  Google Scholar 

  • Potter CS, Matson PA, Vitousek PM, Davidson EA (1996) Processs modeling of controls on nitrogen trace gas emissions from soil worldwide. J Geophys Res 101(D1):1361–1377

    Article  CAS  Google Scholar 

  • Remde A, Conrad R (1991) Role of nitrification and denitrification for no metabolism in soil. Biogeochemistry 12:189–205

    Article  CAS  Google Scholar 

  • Russell CA, Fillery IRP, Bootsma N, McInnes KJ (2002) Effect of temperature and nitrogen source on nitrification in a sandy soil. Commun Soil Sci Plant Anal 33:1975–1989

    Article  CAS  Google Scholar 

  • Serça D, Delmas R, Jambert C, Labroue L (1994) Emissions of nitrogen oxides from equatorial rain forest in central africa: origin and regulation of NO emissions from soils. Tellus 46B:243–254

    Google Scholar 

  • Sherlock RR, Goh KM (1985) Dynamics of ammonia volatilization from simulated urine patches and aqueous urea applied to pasture. 2. Theoretical derivation of a simplified model. Fertilizer Res 6:3–22

    Article  CAS  Google Scholar 

  • Skiba U, Fowler D, Smith KA (1997) Nitric oxide emissions from agricultural soils in temperate and tropical climates: sources, controls and mitigation options. Nutr Cycl Agroecosys 48:139–153

    Article  CAS  Google Scholar 

  • Smith JU, Smith P, Addiscott TM (1996) Quantitative methods to evaluate and compare soil organic matter (SOM) models. In: Powlson D, Smith JU, Smith P (eds) Evaluation of soil organic matter models. Springer-Verlag, Berlin Heidelberg, pp 181–199

    Google Scholar 

  • Stehfest E, Bouwman L (2006) N2O and NO emissions from agricultural fields and soils under natural vegetation: summarizing available measurement data and modeling of global annual emissions. Nutr Cycl Agroecosys 74:207–228. doi: 10.1007/s10705-006-9000-7

  • Stohl A, Williams E, Kromp-Kolb GWH (1996) An european inventory of soil nitric oxide emissions and the effect of these emissions on the photochemical formation of ozone. Atmos Environ 30:3741–3755

    Article  CAS  Google Scholar 

  • Thompson AM (1992) The oxidizing capacity of the earth’s atmosphere: probable past and future changes. Science 256:1157–1165

    Article  CAS  Google Scholar 

  • Thornton FC, Valente RJ (1996) Soil emissions of nitric oxide and nitrous oxide from no-till corn. Soil Sci Soc Am J 60:1127–1133

    Article  Google Scholar 

  • Veldkamp E, Keller M (1997) Fertilizer-induced nitric oxide emissions from agricultural soils. Nutr Cycl Agroecosys 48:69–77

    Article  CAS  Google Scholar 

  • Ventera RT, Rolston DE (2000) Mechanistic modeling of nitrite accumulation and nitrogen oxide gas emissions during nitrification. J Environ Qual 29(6):1741–1751

    Article  Google Scholar 

  • Ventera RT, Groffman PM, Castro MS, Verchot LV, Fernandez IJ, Adams MB (2004) Soil emissions of nitric oxide in two forest watersheds subjected to elevated n inputs. For Ecol Manage 196:335–349. doi: 10.1016/j.foreco.2004.03.028

    Google Scholar 

  • Williams E, Fehsenfeld F (1991) Measurement of soil nitrogen oxide emissions at three north american ecosystems. J Geophys Res 96(D1): 1033–1042

    Google Scholar 

  • Williams EJ, Guenther A, Fehsenfeld FC (1992) An inventory of nitric oxide emissions from soils in the united states. J Geophys Res 97(D7): 7511–7519

    CAS  Google Scholar 

  • Yamulki S, Goulding KW, Webster CP, Harrisson RM (1995) Studies on NO and N2O fluxes from a wheat field. Atmos Environ 29(14):1627–1635

    Article  CAS  Google Scholar 

  • Yan X, Shimizu K, Akimoto H, Ohara T (2003) Determining fertilizer-induced NO emission ratio from soils by a statistical distribution model. Biol Fertil Soils 39:45–50. doi: 10.1007/s00374-003-0665-7

    Google Scholar 

  • Yienger JJ, Levy H (1995) Empirical model of global soil-biogenic NOx emissions. Journal of Geophysical Research 100(D6):11.447–11.464

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to C. Decuq and M. Lauransot for their contribution to the collection and the chemical analysis of the field data presented in this study. We also thank S. Tanis-Plant for editorial advice in English. Financial support from the french Ministry of Ecology and Durable Development, through the GESBIO3 project of the GICC program is acknowledged. M.-N. Rolland grant is supported by the French Environmental Agency (ADEME) and the National Institute for Agronomy Research (INRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-N. Rolland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolland, MN., Gabrielle, B., Laville, P. et al. Modeling of nitric oxide emissions from temperate agricultural soils. Nutr Cycl Agroecosyst 80, 75–93 (2008). https://doi.org/10.1007/s10705-007-9122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-007-9122-6

Keywords

Navigation