Skip to main content
Log in

Intersonic shear crack propagation using peridynamic theory

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Dynamic crack propagation of mode-II cracks is simulated using bond-based Peridynamic Theory (PD) implemented in finite element analysis software ABAQUS. The specimen is a bonded homogeneous Homalite plate with a pre-notch that is subjected to impact shear loading simulating the experiments of Rosakis et al. (1999). The PD bonds at the bonding interface are utilized with a scalar critical stretch value that corresponds to mode-II fracture toughness of the interface. The crack initiation and propagation are naturally captured in the bond-based PD simulations by modifying the original prototype microelastic brittle law formulation introduced by Silling and Askari (2005). Impact loading is introduced at the specimen as a pulse speed field boundary condition. Using bond-based PD, sub-Rayleigh and intersonic regimes of crack growth are obtained as a function of fracture toughness (\(G_{II}\)) and impact speed (\(V_i\)) values. The intersonic crack growth is discerned from the sub-Rayleigh crack growth by the existence of shear Mach waves in the particle velocity magnitude contours. For critical values of \(G_{II}\) and \(V_i\), a crack growing at a speed just below the Rayleigh wave speed is observed to transition to an intersonic speed with a Burridge-Andrews mechanism. The sustained intersonic crack tip speed is found to be between \(1.57c_S\) (\(c_S\) is the shear wave speed) and \(c_D\) (\(c_D\) is the dilatational wave speed). For a reduced impact pulse duration, an intersonic crack is found to approach the theoretical value of \(\sqrt{2}c_S\), which, however is not maintained. The results are in qualitative agreement with the experiments of Rosakis et al. (1999) and previous simulations in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Abaqus V (2014) 6.14 documentation. Dassault Syst Simul Corp. 651:2–6

    Google Scholar 

  • Abraham FF, Gao H (2000) How fast can cracks propagate? Phys Rev Lett 84(14):3113

    Article  CAS  Google Scholar 

  • Agwai A, Guven I, Madenci E (2011) Predicting crack propagation with peridynamics: a comparative study. Int J Fract 171(1):65

    Article  Google Scholar 

  • Andrews D (1976) Rupture velocity of plane strain shear cracks. J Geophys Res 81(32):5679–5687

    Article  Google Scholar 

  • Beckmann R, Mella R, Wenman M (2013) Mesh and timestep sensitivity of fracture from thermal strains using peridynamics implemented in abaqus. Comput Methods Appl Mech Eng 263:71–80

    Article  Google Scholar 

  • Bobaru F, Zhang G (2015) Why do cracks branch? a peridynamic investigation of dynamic brittle fracture. Int J Fract 196(1–2):59–98

    Article  Google Scholar 

  • Broberg K (1989) The near-tip field at high crack velocities. In: Structural Integrity, Springer, New York, pp 1–13

  • Broberg KB (1999) Cracks and fracture. Elsevier, Amsterdam

    Google Scholar 

  • Burridge R, Conn G, Freund L (1979) The stability of a rapid mode II shear crack with finite cohesive traction. J Geophys Res Solid Earth 84(B5):2210–2222

    Article  Google Scholar 

  • Cheng Z, Liu Y, Zhao J, Feng H, Wu Y (2018) Numerical simulation of crack propagation and branching in functionally graded materials using peridynamic modeling. Eng Fract Mech 191:13–32

    Article  Google Scholar 

  • Coker D, Rosakis AJ (2001) Experimental observations of intersonic crack growth in asymmetrically loaded unidirectional composite plates. Philos Mag A 81(3):571–595

    Article  CAS  Google Scholar 

  • Daphalapurkar NP, Lu H, Coker D, Komanduri R (2007) Simulation of dynamic crack growth using the generalized interpolation material point (gimp) method. Int J Fract 143(1):79–102

    Article  Google Scholar 

  • Diyaroglu C, Oterkus E, Oterkus S, Madenci E (2015) Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solids Struct 69:152–168

    Article  Google Scholar 

  • Du W, Fu X, Sheng Q, Chen J, Du Y, Zhang Z (2020) Study on the failure process of rocks with closed fractures under compressive loading using improved bond-based peridynamics. Eng Fract Mech 240:107315

    Article  Google Scholar 

  • Freund L (1979) The mechanics of dynamic shear crack propagation. J Geophys Res Solid Earth 84(B5):2199–2209

    Article  Google Scholar 

  • Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gerstle W, Sau N, Silling S (2005) Peridynamic modeling of plain and reinforced concrete structures. In: SMiRT18: 18th International Conference on Structural Mechanics in Reactor Technology, Beijing

  • Gerstle W, Sau N, Aguilera E (2007) Micropolar peridynamic modeling of concrete structures. In: Proceedings of the 6th international conference on fracture mechanics of concrete structures

  • Ghajari M, Iannucci L, Curtis P (2014) A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput Methods Appl Mech Eng 276:431–452

    Article  Google Scholar 

  • Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244

    Article  Google Scholar 

  • Ha YD, Bobaru F (2011) Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech 78(6):1156–1168

    Article  Google Scholar 

  • Hu W, Wang Y, Yu J, Yen CF, Bobaru F (2013) Impact damage on a thin glass plate with a thin polycarbonate backing. Int J Impact Eng 62:152–165

    Article  Google Scholar 

  • Huang X, Bie Z, Wang L, Jin Y, Liu X, Su G, He X (2019) Finite element method of bond-based peridynamics and its abaqus implementation. Eng Fract Mech 206:408–426

    Article  Google Scholar 

  • Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156(2):165–177

    Article  Google Scholar 

  • Lambros J, Rosakis AJ (1995) Shear dominated transonic interfacial crack growth in a bimaterial-i experimental observations. J Mech Phys Solids 43(2):169–188

  • Lee O, Knauss W (1989) Dynamic crack propagation along a weakly bonded plane in a polymer. Exp Mech 29(3):342–345

    Article  Google Scholar 

  • Liu C, Lambros J, Rosakis AJ (1993) Highly transient elastodynamic crack growth in a bimaterial interface: higher order asymptotic analysis and optical experiments. J Mech Phys Solids 41(12):1887–1954

    Article  CAS  Google Scholar 

  • Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178

    Article  Google Scholar 

  • Mehrmashhadi J, Wang L, Bobaru F (2019) Uncovering the dynamic fracture behavior of pmma with peridynamics: the importance of softening at the crack tip. Eng Fract Mech 219:106617

    Article  Google Scholar 

  • Needleman A (1999) An analysis of intersonic crack growth under shear loading. J Appl Mech 66:847–857

    Article  CAS  Google Scholar 

  • Nishioka T (1997) Computational dynamic fracture mechanics. Int J Fract 86(1–2):127–159

    Article  Google Scholar 

  • Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: Iii. on steady-state crack propagation and crack branching. Int J Fract 26(2):141–154

  • Ren H, Zhuang X, Rabczuk T (2016) A new peridynamic formulation with shear deformation for elastic solid. J Micromech Mol Phys 1(02):1650009

    Article  Google Scholar 

  • Rosakis A, Samudrala O, Coker D (1999) Cracks faster than the shear wave speed. Science 284(5418):1337–1340

    Article  CAS  Google Scholar 

  • Rosakis AJ (2002) Intersonic shear cracks and fault ruptures. Adv Phys 51(4):1189–1257

    Article  Google Scholar 

  • Rosakis AJ, Samudrala O, Singh RP, Shukla A (1998) Intersonic crack propagation in bimaterial systems. J Mech Phys Solids 46(10):1789–1814

    Article  CAS  Google Scholar 

  • Samudrala O, Huang Y, Rosakis A (2002) Subsonic and intersonic mode ii crack propagation with a rate-dependent cohesive zone. J Mech Phys Solids 50(6):1231–1268

    Article  Google Scholar 

  • Sharon E, Fineberg J (1996) Microbranching instability and the dynamic fracture of brittle materials. Phys Rev B 54(10):7128

    Article  CAS  Google Scholar 

  • Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  Google Scholar 

  • Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535

    Article  Google Scholar 

  • Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93(1):13

    Article  Google Scholar 

  • Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  Google Scholar 

  • Silling SA, Weckner O, Askari E, Bobaru F (2010) Crack nucleation in a peridynamic solid. Int J Fract 162(1–2):219–227

    Article  Google Scholar 

  • Washabaugh PD, Knauss W (1994) A reconciliation of dynamic crack velocity and Rayleigh wave speed in isotropic brittle solids. Int J Fract 65(2):97–114

    Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434

    Article  Google Scholar 

  • Yang Z, Oterkus E, Nguyen CT, Oterkus S (2019) Implementation of peridynamic beam and plate formulations in finite element framework. Contin Mech Thermodyn 31(1):301–315

    Article  Google Scholar 

  • Yolum U, Güler M (2020) On the peridynamic formulation for an orthotropic mindlin plate under bending. Math Mech Solids 25(2):263–287

    Article  Google Scholar 

  • Yu C, Pandolfi A, Ortiz M, Coker D, Rosakis A (2002) Three-dimensional modeling of intersonic shear-crack growth in asymmetrically loaded unidirectional composite plates. Int J Solids Struct 39(25):6135–6157

    Article  Google Scholar 

  • Zhang G, Gazonas GA, Bobaru F (2018) Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: a peridynamic analysis. Int J Impact Eng 113:73–87

    Article  Google Scholar 

  • Zhang Y, Qiao P (2019) A new bond failure criterion for ordinary state-based peridynamic mode ii fracture analysis. Int J Fract 215(1–2):105–128

    Article  Google Scholar 

  • Zhou X, Wang Y, Shou Y, Kou M (2018) A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads. Eng Fract Mech 188:151–183

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the research support for the project funded by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under Grant No. 115M585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demirkan Coker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yolum, U., Coker, D. & Güler, M.A. Intersonic shear crack propagation using peridynamic theory. Int J Fract 228, 103–126 (2021). https://doi.org/10.1007/s10704-021-00520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-021-00520-3

Keywords

Navigation