Skip to main content
Log in

Influences of hydrogen on deformation and fracture behaviors of high Zn 7XXX aluminum alloys

  • IUTAM Paris 2015
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Hydrogen degrades the mechanical properties of high strength 7XXX aluminum alloys in two ways: (i) degrades the mechanical properties by hydrogen embrittlement, and (ii) partitioned into micropores as molecular hydrogen and make contributions to ordinary ductile fracture. The multifaceted effects of hydrogen on the mechanical properties of high Zn content 7XXX aluminum alloys during deformation and fracture is studied by using synchrotron X-ray microtomography. Our results have revealed that the hydrogen susceptibility has increased with increasing the Zn amount. High concentration of hydrogen was induced by the EDM wire eroder. This high concentrated hydrogen induces quasi-cleavage fracture and restricts the growth of micropores during ductile deformation. The threshold concentration of hydrogen ahead of the crack tip for the nucleation of quasi-cleavage feature was estimated to be \(13~\hbox {cm}^{3}/100~\hbox {g Al}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Adler PN, De lasi R, Geschwind G (1971) Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7075 aluminum alloysD. Metall Trans 3:3191–3200

    Article  Google Scholar 

  • Albrecht J, Thompson AW, Bernstein IM (1979) The role of microstructure in hydrogen-assisted fracture of 7075 aluminum. Metall Trans 10A:1759–1766

    Article  Google Scholar 

  • Albrecht J, Bernstein IM, Thompson AW (1982) Evidence for dislocation transport of hydrogen in aluminum. Metall Trans A (13A):811–820

  • Ambat R, Dwarakadasa ES (1990) Effect of hydrogen in aluminum and aluminum alloys: a review. Bull Mater Sci 19(1):103–114

    Article  Google Scholar 

  • Balasubramaniam R, Duquette DJ, Rajan K (1991) On the stress corrosion cracking in aluminum–lithium alloys. Acta Mater 39(11):2597–2605

    Article  Google Scholar 

  • Barber CB, Dobkin DP, Huhdanpaa HT (1996) The quickhull algorithm for convex hulls. ACM Trans Math Softw 22:469–483

    Article  Google Scholar 

  • Bhuiyan MS, Peng Z, Hang S, Toda H, Uesugi K, Takeuchi A, Suzuki Y, Sakaguchi N, Watanabe Y (2016) Combined microtomography, thermal desorption spectroscopy, X-ray diffraction study of hydrogen trapping behavior in 7XXX aluminum alloys. Mater Sci Eng A 655:221–228

  • Bond GM, Robertson IM, Birbaum HK (1987) The influence of hydrogen on deformation and fracture process in high strength aluminum alloys. Acta Mater 35(9):2289–2296

    Article  Google Scholar 

  • Chen Z, Mo Y, Nie Z (2013) Effect of Zn content on the microstructure and properties of super-high strength Al–Zn–Mg–Cu alloys. Metall Mater Trans A 44A:3910–3920

    Article  Google Scholar 

  • Dodds RH, Ruggieri C, Koppenhoefer K (1997) 3-D constraint effects on models for transferability of cleavage fracture toughness. ASTM Spec Tech Publ 1321:179–197

    Google Scholar 

  • Gest RJ, Troiano AR (1974) Stress corrosion and hydrogen embrittlement in an aluminum alloys. Corrosion 30(8):274–279

    Article  Google Scholar 

  • Gruhl W, Metallkd Z (1984) Stress corrosion cracking of high strength aluminum alloys. Mater Sci Eng A 75(11):819–826

  • Hardie D, Holroyd NJH, Parkins RN (1979) Reduced ductility of high-strength aluminum alloy during or after exposure to water. Metal Sci 13(11):603–610

    Article  Google Scholar 

  • Holroyd NJH, Hardie D (1981) Strain-rate effects on the environmentally assisted fracture of a commercial high-strength aluminum alloys (7049). Corros Sci 21:129–144

    Article  Google Scholar 

  • Imabayashi M, Tomita K (2014) Method for measuring hydrogen in aluminum by vacuum fusion extraction. J Jpn Inst Light Metals 22(1):73–81

    Article  Google Scholar 

  • Immarigeon JP, Holt RT, Koul AK, Zhao L, Wallace W, Beddos JC (1995) Lightweight materials for aircraft applications. Mater Charact 35:41–67

    Article  Google Scholar 

  • Izumi T, Itoh G (2011) Thermal desorption spectroscopy study on the hydrogen trapping states in a pure aluminum. Mater Trans 52(2):130–134

    Article  Google Scholar 

  • Kalidindi SR, Abusafieh A, El-Danaf E (1996) Accurate characterization of machine compliance for simple compression testing. Exp Mech 37(2):210–215

    Article  Google Scholar 

  • Kamoutsi H, Haidemenopoulos GN, Bontozoglou V, Pantelekis S (2006) Corrosion-induced hydrogen embrittlement in aluminum alloy 2024. Corros Sci 48:1209–1224

    Article  Google Scholar 

  • Kobayashi M, Toda H, Kawai Y, Ohgaki T, Uesugi K, Wilkinson DS, Kobayashi T, Aoki Y, Nakazawa M (2008) High-density three-dimensional mapping of internal strain by tracking microsctural features. Acta Mater 56:2167–2181

    Article  Google Scholar 

  • Koyama K (2010) High-strength and heat resistant aluminum alloys. Furukawa-Sky Rev 6:7–22

    Google Scholar 

  • Koyama M, Akiyama E, Sawaguchi T, Ogawa K, Kireeva IV, Chamlyakov YI, Tsuzaki K (2013) Hydrogen-assisted quasi-cleavage fracture in a single crystalline type 316 austenitic stainless steel. Corros Sci 75:345–353

    Article  Google Scholar 

  • Leger M, Piercy GR (1981) Internal friction in hydrogen-charged aluminum alloys. Philos Mag A 43:377–385

    Article  Google Scholar 

  • Lu G, Zhang Q, Kioussis N, Kaxiras E (2001) Hydrogen-enhanced local plasticity in aluminum: an ab initio study. Phys Rev Lett 87(9):095501-1–095501-4

    Article  Google Scholar 

  • Meletis EI, Huang W (1991) The role of the T1 phase in the pre-exposure and hydrogen embrittlement of Al–Li–Cu alloys. Mater Sci Eng A 148:197–209

    Article  Google Scholar 

  • Milman YV, Sirko AI, Lotsko DV, Senkov ON, Miracle DB (2002) Microstructure and mechanical properties of cast and wrought Al–Zn–Mg–Cu alloys modified with Zr and Sc. Mater Sci forum 396–402:1217–1222

    Article  Google Scholar 

  • Nguyen D, Thompson AW, Bernstein IM (1987) Microstructural effects on hydrogen embrittlement in a high purity 7075 aluminum alloys. Acta Mater 35(10):2417–2425

    Article  Google Scholar 

  • Ohinishi T, Higashi K (1984) Application of fracture mechanics to propagation of stress corrosion crack based on localized hydrogen embrittlement. Light Metal 34(12):675–681

    Article  Google Scholar 

  • Oriani RA (1970) The diffusion and trapping of hydrogen in steel. Acta Mater 18:147–157

    Article  Google Scholar 

  • Park JK, Ardell AJ (1984) Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651. Metall Trans 15A:1531–1543

    Article  Google Scholar 

  • Pickens JR, Gordon JR, Green AS (1983) The effect of loading mode on the stress-corrosion cracking of aluminum alloys 5083. Metall Trans 14A:925–930

    Article  Google Scholar 

  • Rometsch PA, Zhang Y, Knight S (2014) Heat treatment of 7XXX series aluminum alloys—some recent developments. Trans Nonferrous Metals Soc China 24:2003–2017

    Article  Google Scholar 

  • Seyed Ebrahimi SH, Emamy M, Pourkia N, Lashgari HR (2010) The microstructure, hardness and tensile properties of a new super high strength aluminum alloys with Zr addition. Mater Des 31:4450–4456

    Article  Google Scholar 

  • Smith SW, Scally JR (2003) The Identification of hydrogen trapping states in an Al–Li–Cu–Zr alloys using thermal desorption spectroscopy. Metall Mater Trans A 31A:179–183

    Google Scholar 

  • Starke EA Jr, Staleyt JT (1996) Application of modern aluminum alloys to aircraft. Prog Aerosp Sci 32(2–3):131–172

    Article  Google Scholar 

  • Taheri M, Albrecht J, Bernstein IM, Thompson AW (1979) Strain-rate effects on hydrogen embrittlement of 7075 aluminum. Scr Metell 13:871–875

    Article  Google Scholar 

  • Takano N (2008) Hydrogen diffusion and embrittlement in 7075 aluminum alloys. Mater Sci Eng A 483–484:336–339

    Article  Google Scholar 

  • Thakur C, Balasubramaniam R (1997) Hydrogen embrittlement of aged and retrogressed reaged Al–Li–Cu–Mg alloys. Acta Metall 45(4):1323–1332

    Google Scholar 

  • Thompson AW, Bernstein IM (1975) Environmental fracture of aluminum alloys and stainless steels as a function of composition and microstructure. Rev Coat Corros 2:3–44

    Google Scholar 

  • Thompson AW, Bernstein IM (1980) The role of metallurgical variable in hydrogen assisted environmental fracture. In: Fontana MG, Staehle RW (eds) Advances in corrosion science and technology, vol 7. Springer, NewYork, pp 53–175

  • Toda H, Marie E, Aoki Y, Kobayashi M (2011) Three-dimensional strain mapping using in situ X-ray shynchrotron microtomography. J Strain Anal Eng Des 46:549–561

    Article  Google Scholar 

  • Toda H, Inamori T, Horikawa K, Uesugi K, Takeuchi A, Suzuki Y, Kobayashi M (2013) Effects of hydrogen micro pores on mechanical properties in A2024 aluminum alloys. Mater Trans 54(12):2195–2201

    Article  Google Scholar 

  • Toda H, Oogo H, Horikawa K, Uesugi K, Takeuchi A, Suzuki Y, Nakazawa M, Aoki Y, Kobayashi M (2014) The true origin of ductile fracture in aluminum alloys. Metall Mater Trans A 45A:765–776

    Article  Google Scholar 

  • Truck CDS (1985) The embrittlement of Al–Zn–Mg and Al–Mg alloys by water vapor. Metall Trans A 16:1503–1514

    Article  Google Scholar 

  • Tyson B, Ding P, Wang X (2014) Elastic compliance of single-edge-notched tension SE(T) (or SENT) specimens. Fratturaed Integrità Strutturale 30:95–100

    Google Scholar 

  • Ungár T, Borbély A (1996) The effect of dislocation contrast on X-ray line broadening: a new approach to line profile analysis. Appl Phys Lett 69:3173–3175

    Article  Google Scholar 

  • Woo W, Ungár T, Feng Z, Kenik E, Clausen B (2010) X-ray and neutron diffreaction measurements of dislocation density and subgrain size in a friction-stir-welded aluminum alloy. Metall Mater Trans A 41:1210–1216

    Article  Google Scholar 

  • Yuan H, Brocks W (1998) Quantification of constraints effects in elastic–plastic crack front fields. J Mech Phys Solids 46(2):219–241

    Article  Google Scholar 

  • Zeides F, Roman I (1990) Study of hydrogen embrittlement in aluminum alloys 2024 in the longitudinal direction. Mater Sci Eng A 125:21–30

  • Zhao J, Jiang Z, Lee CS (2014) Effects of tungsten on the hydrogen embrittlement behavior of microalloysed steels. Corros Sci 82:380–391

    Article  Google Scholar 

  • Zhu XK, Joyce JA (2012) Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng Fract Mech 85:1–46

    Article  Google Scholar 

Download references

Acknowledgments

The synchrotron radiation experiments were performed with the approval of JASRI through proposal Nos. 2013B1324, 2014A1018, and 2014B1157. This work was undertaken as a part of Development of Innovative Aluminum Materials Projects and Technological Development of Innovative New Structural Materials with the Project Code HAJJ262715.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shahnewaz Bhuiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuiyan, M.S., Tada, Y., Toda, H. et al. Influences of hydrogen on deformation and fracture behaviors of high Zn 7XXX aluminum alloys. Int J Fract 200, 13–29 (2016). https://doi.org/10.1007/s10704-016-0092-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-016-0092-z

Keywords

Navigation