Skip to main content
Log in

Investigation into effects of antipsychotics on ectonucleotidase and adenosine deaminase in zebrafish brain

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Antipsychotic agents are used for the treatment of psychotic symptoms in patients with several brain disorders, such as schizophrenia. Atypical and typical antipsychotics differ regarding their clinical and side-effects profile. Haloperidol is a representative typical antipsychotic drug and has potent dopamine receptor antagonistic functions; however, atypical antipsychotics have been developed and characterized an important advance in the treatment of schizophrenia and other psychotic disorders. Purine nucleotides and nucleosides, such as ATP and adenosine, constitute a ubiquitous class of extracellular signaling molecules crucial for normal functioning of the nervous system. Indirect findings suggest that changes in the purinergic system, more specifically in adenosinergic activity, could be involved in the pathophysiology of schizophrenia. We investigated the effects of typical and atypical antipsychotics on ectonucleotidase and adenosine deaminase (ADA) activities, followed by an analysis of gene expression patterns in zebrafish brain. Haloperidol treatment (9 µM) was able to decrease ATP hydrolysis (35 %), whereas there were no changes in hydrolysis of ADP and AMP in brain membranes after antipsychotic exposure. Adenosine deamination in membrane fractions was inhibited (38 %) after haloperidol treatment when compared to the control; however, no changes were observed in ADA soluble fractions after haloperidol exposure. Sulpiride (250 µM) and olanzapine (100 µM) did not alter ectonucleotidase and ADA activities. Haloperidol also led to a decrease in entpd2_mq, entpd3 and adal mRNA transcripts. These findings demonstrate that haloperidol is an inhibitor of NTPDase and ADA activities in zebrafish brain, suggesting that purinergic signaling may also be a target of pharmacological effects promoted by this drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signaling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  CAS  PubMed  Google Scholar 

  • Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, Gorman JM, Laruelle M (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 97:8104–8109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Appelbaum L, Skariah G, Mourrain P, Mignot E (2007) Comparative expression of P2X receptors and ecto-nucleoside triphosphate diphosphohydrolase 3 in hypocretin and sensory neurons in zebrafish. Brain Res 1174:66–75

    Article  CAS  PubMed  Google Scholar 

  • Barnes JM, Murphy PA, Kirkham D, Henley JM (1993) Interaction of guanine nucleotides with [3H] kainate and 6-[3H] cyano-7-nitroquinoxaline-2,3-dione binding in goldfish brain. J Neurochem 61:1685–1691

    Article  CAS  PubMed  Google Scholar 

  • Boehmler W, Petko J, Woll M, Frey C, Thisse B, Thisse C, Canfield VA, Levenson R (2009) Identification of zebrafish A2 adenosine receptors and expression in developing embryos. Gene Expr Patterns 9:144–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boison D (2006) Adenosine kinase, epilepsy and stroke: mechanisms and 398 therapies. Trends Pharmacol Sci 27:652–658

    Article  CAS  PubMed  Google Scholar 

  • Borycz J, Pereira MF, Melani A, Rodrigues RJ, Köfalvi A, Panlilio L, Pedata F, Goldberg SR, Cunha RA, Ferré S (2007) Differential glutamate-dependent and glutamate-independent adenosine A1 receptor mediated modulation of dopamine release in different striatal compartments. J Neurochem 101:355–363

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:218–254

    Article  Google Scholar 

  • Brundege JM, Dunwiddie TV (1997) Role of adenosine as a modulator of synaptic activity in the central nervous system. Adv Pharmacol 39:353–391

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7:575–590

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2009) Purinergic signalling: past, present and future. Braz J Med Biol Res 42:3–8

    Article  CAS  PubMed  Google Scholar 

  • Carfagna MA, Muhoberac BB (1993) Interaction of tricyclic drug analogs with synaptic plasma membranes: structure-mechanism relationships in inhibition of neuronal Na+/K(+)-ATPase activity. Mol Pharmacol 44:129–141

    CAS  PubMed  Google Scholar 

  • Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  • Chen WY, John JAC, Lin CH, Lin HF, Wu SC, Lin CH, Chang CY (2004) Expression of metallothionen gene during embryonic and early larval development in zebrafish. Aquat Toxicol 69:215–227

    Article  CAS  PubMed  Google Scholar 

  • Crossley NA, Constante M, McGuire P, Power P (2010) Efficacy of atypical v. typical antipsychotics in the treatment of early psychosis: meta-analysis. Br J Psychiatry 196(6):434–439

    Article  PubMed Central  PubMed  Google Scholar 

  • Cunha RA, Ferré S, Vaugeois JM, Chen JF (2008) Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des 14:1512–1524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dall’Igna OP, da Silva AL, Dietrich MO, Hoffmann A, de Oliveira RV, Souza DO, Lara DR (2003) Chronic treatment with caffeine blunts the hyperlocomotor but not cognitive effects of the N-methyl-d-aspartate receptor antagonist MK-801 in mice. Psychopharmacology 166:258–263

    PubMed  Google Scholar 

  • de Oliveira RV, Dall’Igna OP, Tort AB, Schuh JF, Neto PF, Santos Gomes MW, Souza DO, Lara DR (2005) Effect of subchronic caffeine treatment on MK-801-induced changes in locomotion, cognition and ataxia in mice. Behav Pharmacol 16:79–84

    Article  PubMed  Google Scholar 

  • Dunwiddie TV, Massino SA (2001) The role and regulation of adenosine in central nervous system. Annu Rev Neurosci 24:31–55

    Article  CAS  PubMed  Google Scholar 

  • Ferré S (1997) Adenosine–dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology 2:107–120

    Google Scholar 

  • Ferré S (2008) An update on the mechanisms of the psychostimulant effects of caffeine. J Neurochem 105:1067–1079

    Article  PubMed  Google Scholar 

  • Franco R, Casado V, Ciruela F, Saura C, Mallol J, Canela EI, Lluis C (1997) Cell surface adenosine deaminase: much more than an ecto-enzyme. Prog Neurobiol 52:283–294

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270

    Article  CAS  PubMed  Google Scholar 

  • Gerlai R, Lahav S, Guo S, Rosenthal A (2000) Drinks like a fish: zebrafish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–782

    Article  CAS  PubMed  Google Scholar 

  • Giacomini NJ, Rose B, Kobayashi K, Guo S (2006) Antipsychotics produce locomotor impairment in larval zebrafish. Neurotoxicol Teratol 28:245–250

    Article  CAS  PubMed  Google Scholar 

  • Golembiowska K, Zylewska A (1998) Agonists of A1 and A2A adenosine receptors attenuate methamphetamine-induced overflow of dopamine in rat striatum. Brain Res 2:202–209

    Article  Google Scholar 

  • Heiser P, Enning F, Krieg JC, Vedder H (2007) Effects of haloperidol, clozapine and olanzapine on the survival of human neuronal and immune cells in vitro. J Psychopharmacol 21:851–856

    Article  CAS  PubMed  Google Scholar 

  • Herrera C, Casadó V, Ciruela F, Schofield P, Mallol J, Lluis C, Franco R (2001) Adenosine A2B receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. Mol Pharmacol 59:127–134

    CAS  PubMed  Google Scholar 

  • Inoue K, Koizumi S, Ueno S (1996) Implication of ATP receptors in brain functions. Prog Neurobiol 50:483–492

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Obara Y, Kamei C (2009) Effects of some antipsychotics and a benzodiazepine hypnotic on the sleep-wake pattern in an animal model of schizophrenia. J Pharmacol Sci 111:44–52

    Article  CAS  PubMed  Google Scholar 

  • Karow A, Naber D (2002) Subjective well-being and quality of life under atypical antipsychotic treatment. Psychopharmacology 162:3–10

    Article  CAS  PubMed  Google Scholar 

  • Kucenas S, Li Z, Cox JA, Egan TM, Voigt MM (2003) Molecular characterization of the zebrafish P2X receptor subunit gene family. Neuroscience 121:935–945

    Article  CAS  PubMed  Google Scholar 

  • Lara DR, Souza DO (2000) Schizophrenia: a purinergic hypothesis. Med Hypotheses 54:157–166

    Article  CAS  PubMed  Google Scholar 

  • Lara DR, Vianna MR, de Paris F, Quevedo J, Oses JP, Battastini AM, Sarkis JJ, Souza DO (2001) Chronic treatment with clozapine, but not haloperidol, increase striatal ecto-5′-nucleotidase activity in rats. Neuropsychobiology 44:99–102

    Article  CAS  PubMed  Google Scholar 

  • Lara DR, Dall’Igna OP, Ghisolfi ES, Brunstein MG (2006) Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry 30:617–629

    Article  CAS  PubMed  Google Scholar 

  • Laruelle M (2000) The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Rev 2:371–384

    Article  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  CAS  PubMed  Google Scholar 

  • Lucas PB, Pickar D, Kelsoe J, Rapaport M, Pato C, Hommer D (1990) Effects of the acute administration of caffeine in patients with schizophrenia. Biol Psychiatry 1:35–40

    Article  Google Scholar 

  • Massé K, Eason R, Bhamra S, Dale N, Jones EA (2006) Comparative genomic and expression analysis of the conserved NTPDase gene family in Xenopus. Genomics 87:366–381

    Article  PubMed  Google Scholar 

  • McGrath J, Saha S, Welham J, El Saadi O, MacCauley C, Chant D (2004) A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med 28:2–13

    Google Scholar 

  • Meltzer HY (2013) Update on typical and atypical antipsychotic drugs. Annu Rev Med 64:393–406

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY, Davidson M, Glassman AH, Vieweg WV (2002) Assessing cardiovascular risks versus clinical benefits of atypical antipsychotic drug treatment. J Clin Psychiatry 63:25–29

    PubMed  Google Scholar 

  • Morris JA (2009) Zebrafish: a model system to examine the neurodevelopmental basis of schizophrenia. Prog Brain Res 179:97–106

    Article  CAS  PubMed  Google Scholar 

  • North RA, Verkhratsky A (2006) Purinergic transmission in the central nervous system. Pflugers Arch 452:479–485

    Article  CAS  PubMed  Google Scholar 

  • Ozyurt B, Sarsilmaz M, Akpolat N, Ozyurt H, Akyol O, Herken H, Kus I (2007) The protective effects of omega-3 fatty acids against MK-801-induced neurotoxicity in prefrontal cortex of rat. Neurochem Int 50:196–202

    Article  CAS  PubMed  Google Scholar 

  • Pani L (2009) The need for individualised antipsychotic drug therapy in patients with schizophrenia. Eur Rev Med Pharmacol Sci 13:453–459

    CAS  PubMed  Google Scholar 

  • Pinna A, Wardas J, Cozzolino A, Morelli M (1999) Involvement of adenosine A2A receptors in the induction of c-fos expression by clozapine and haloperidol. Neuropsychopharmacology 20:44–51

    Article  CAS  PubMed  Google Scholar 

  • Rico EP, Senger MR, Fauth MG, Dias RD, Bogo MR, Bonan CD (2003) ATP and ADP hydrolysis in brain membranes of zebrafish (Danio rerio). Life Sci 73:2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Rico EP, Rosemberg DB, Senger MR, Arizi MB, Bernardi GF, Dias RD, Bogo MR, Bonan CD (2006) Methanol alters ecto-nucleotidases and acetylcholinesterase in zebrafish brain. Neurotoxicol Teratol 28:489–496

    Article  CAS  PubMed  Google Scholar 

  • Rosemberg DB, Rico EP, Guidoti MR, Dias RD, Souza DO, Bonan CD (2007) Adenosine deaminase-related genes: molecular identification, tissue expression pattern and truncated alternative splice isoform in adult zebrafish (Danio rerio). Life Sci 81:1526–1534

    Article  CAS  PubMed  Google Scholar 

  • Rosemberg DB, Rico EP, Senger MR, Dias RD, Bogo MR, Bonan CD (2008) Kinetic characterization of adenosine deaminase activity in zebrafish (Danio rerio) brain. Comp Biochem Physiol B 151:96–101

    Article  PubMed  Google Scholar 

  • Saura CA, Mallol J, Canela EI, Lluis C, Franco R (1998) Adenosine deaminase and A1 adenosine receptors internalize together following agonist-induced receptor desensitization. J Biol Chem 273:17610–17617

    Article  CAS  PubMed  Google Scholar 

  • Seeman P, Schwarz J, Chen JF, Szechtman H, Perreault M, McKnight GS, Roder JC, Quirion R, Boksa P, Srivastava LK, Yanai K, Weinshenker D, Sumiyoshi T (2006) Psychosis pathways converge via D2 high dopamine receptors. Synapse 60:319–346

    Article  CAS  PubMed  Google Scholar 

  • Seibt KJ, Oliveira RL, Rico EP, Dias RD, Bogo MR, Bonan CD (2009) Antipsychotic drugs inhibit nucleotide hydrolysis in zebrafish (Danio rerio) brain membranes. Toxicol In Vitro 23:78–82

    Article  CAS  PubMed  Google Scholar 

  • Seibt KJ, da Oliveira RL, Zimmermann FF, Capiotti KM, Bogo MR, Ghisleni G, Bonan CD (2010) Antipsychotic drugs prevent the motor hyperactivity induced by psychotomimetic MK-801 in zebrafish (Danio rerio). Behav Brain Res 214:417–422

    Article  CAS  PubMed  Google Scholar 

  • Senger MR, Rico EP, Dias RD, Bogo MR, Bonan CD (2004) Ecto-5′-nucleotidase activity in brain membranes of zebrafish (Danio rerio). Comp Biochem Physiol B: Biochem Mol Biol 139:203–207

    Article  Google Scholar 

  • Tessier C, Nuss P, Staneva G, Wolf C (2008) Modification of membrane heterogeneity by antipsychotic drugs: an X-ray diffraction comparative study. J Colloid Interface Sci 320:469–475

    Article  CAS  PubMed  Google Scholar 

  • van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645

    Article  PubMed  Google Scholar 

  • Volavka J, Czobor P, Sheitman B, Lindenmayer JP, Citrome L, McEvoy JP, Cooper TB, Chakos M, Lieberman JA (2002) Clozapine, olanzapine, risperidone, and haloperidol in the treatment of patients with chronic schizophrenia and schizoaffective disorder. Am J Psychiatry 159:255–262

    Article  PubMed  Google Scholar 

  • Wardas J (2008) Potential role of adenosine A2A receptors in the treatment of schizophrenia. Front Biosci 13:4071–4096

    Article  CAS  PubMed  Google Scholar 

  • Weisman MI, Caiolfa VR, Parola AH (1988) Adenosine deaminase-complexing protein from bovine kidney. Isolation of two distinct subunits. J Biol Chem 263:5266–5270

    CAS  PubMed  Google Scholar 

  • Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H (2001) Ecto-nucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52:44–56

    Article  CAS  Google Scholar 

  • Zimmermann H (2006) Ectonucleotidases in the nervous system. Novartis Found Symp 276:113–128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by DECIT/SCTIEMS through Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, Proc. 10/0036-5, conv. 700545/2008). K.J.S. was a recipient of a fellowship from Programa PROBOLSAS/PUCRS. R.L.O. was a recipient of a fellowship from PIBIC/CNPq/PUCRS. M.R.S. was a recipient of a fellowship from CNPq. The authors also would like to thank Cladinara Sarturi for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mario Roberto Senger or Carla Denise Bonan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seibt, K.J., da Luz Oliveira, R., Bogo, M.R. et al. Investigation into effects of antipsychotics on ectonucleotidase and adenosine deaminase in zebrafish brain. Fish Physiol Biochem 41, 1383–1392 (2015). https://doi.org/10.1007/s10695-015-0093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0093-2

Keywords

Navigation