Skip to main content
Log in

Ontogenetic development of adipose tissue in grass carp (Ctenopharyngodon idellus)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

To investigate the adipose tissue development process during the early stages of grass carp (Ctenopharyngodon idellus) development, samples were collected from fertilized eggs to 30 days post-fertilization (dpf) of fish. Paraffin and frozen sections were taken to observe the characteristics of adipocytes in vivo by different staining methods, including hematoxylin and eosin (H&E), Oil red O, and BODIPY. The expression of lipogenesis-related genes of the samples at different time points was detected by real-time qPCR. In addition, protein expression level of peroxisome proliferator-activated receptors γ (PPAR γ) was detected by immunohistochemistry. The results showed that the neutral lipid droplets accumulated first in the hepatocytes of 14-dpf fish larvae, and visceral adipocytes appeared around the hepatopancreas on 16 dpf. As grass carp grew, the adipocytes increased in number and spread to other tissues. In 20-dpf fish larvae, the intestine was observed to be covered by adipose tissue. However, there was no significant change in the average size (30.40–40.01 μm) of adipocytes during this period. Accordingly, the gene expression level of PPAR γ and CCAAT/enhancer-binding proteins α (C/EBP α) was significantly elevated after fertilization for 12 days (p < 0.05), but C/EBP α declined at 20 dpf. Expression of lipoprotein lipase (LPL) increased from 2 to 16 dpf and then declined. In addition, immunoreaction of PPAR γ was positive on hepatocytes after fertilization for 15 days. These results implied that the early developmental stage of adipose tissue is caused by active recruitment of adipocytes as opposed to hypertrophy of the cell. In addition, our study indicated that lipogenesis-related genes might regulate the ongoing development of adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BAT:

Brown adipose tissue

WAT:

White adipose tissue

CVD:

Cardiovascular disease

PPAR γ:

Peroxisome proliferator-activated receptors

LPL:

Lipoprotein lipase

dpf:

Days post-fertilization

H&E:

Hematoxylin and eosin

PBS:

Phosphate-buffered saline

APES:

3-Aminopropyl-triethoxysilane

TBS:

Tris buffer solution

BSA:

Bovine serum albumin

C/EBP α:

CCAAT/enhancer-binding proteins α

FAS:

Fatty acid synthase

References

  • Albalat A, Sánchez-Gurmaches J, Gutiérrez J, Navarro I (2006) Regulation of lipoprotein lipase activity in rainbow trout (Oncorhynchus mykiss) tissues. Gen Comp Endocrinol 146(3):226–235

    Article  CAS  PubMed  Google Scholar 

  • Albalat A, Saera-Vila A, Capilla E, Gutiérrez J, Pérez-Sánchez J, Navarro I (2007) Insulin regulation of lipoprotein lipase (LPL) activity and expression in gilthead sea bream (Sparus aurata). Comp Biochem Physiol B 148(2):151–159

    Article  CAS  PubMed  Google Scholar 

  • Amri E, Bertrand B, Ailhaud G, Grimaldi P (1991) Regulation of adipose cell differentiation. I. Fatty acids are inducers of the aP2 gene expression. J Lipid Res 32:1449–1456

    CAS  PubMed  Google Scholar 

  • Bellardi S, Bianchini ML, Domenis L, Palmegiano GB (1995) Effect of feeding schedule and feeding rate on size and number of adipocytes in rainbow trout (Oncorhynchus mykiss). J World Aquac Soc 26(1):80–83

    Article  Google Scholar 

  • Bornstein SR, Abu-Asab M, Glasow A, Päth G, Hauner H, Tsokos M, Chrousos GP, Scherbaum WA (2000) Immunohistochemical and ultrastructural localization of leptin and leptin receptor in human white adipose tissue and differentiating human adipose cells in primary culture. Diabetes 49:532–538

    Article  CAS  PubMed  Google Scholar 

  • Bouraoui L, Gutierrez J, Navarro I (2008) Regulation of proliferation and differentiation of adipocyte precursor cells in rainbow trout (Oncorhynchus mykiss). J Endocrinol 198:459–469

    Article  CAS  PubMed  Google Scholar 

  • Bouraoui L, Cruz-Garcia L, Gutiérrez J, Capilla E, Navarro I (2012) Regulation of lipoprotein lipase gene expression by insulin and troglitazone in rainbow trout (Oncorhynchus mykiss) adipocyte cells in culture. Comp Biochem Physiol A 161(1):83–88

    Article  CAS  Google Scholar 

  • Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48(12):2547–2559

    Article  CAS  PubMed  Google Scholar 

  • Cheng YC, Chen HY (2013) Effects of different fatty acids on cell differentiation and lipid accumulation in preadipocytes of warm water fish cobia (Rachycentron canadum Linnaeus, 1766). Aquac Res. doi:10.1111/are.12204

    Google Scholar 

  • Cruz-Garcia L, Saera-Vila A, Navarro I, Calduch-Giner J, Pérez-Sánchez J (2009) Targets for TNFa-induced lipolysis in gilthead sea bream (Sparus aurata L) adipocytes isolated from lean and fat juvenile fish. J Exp Biol 212:2254–2260

    Article  CAS  PubMed  Google Scholar 

  • Dugail I, Quignard-Boulange A, Dupuy F (1986) Role of adipocyte precursors in the onset of obesity induced by overfeeding in suckling rats. J Nutr 116:524–535

    CAS  PubMed  Google Scholar 

  • Farmer SR (2006) Transcriptional control of adipocyte formation. Cell Metab 4:263–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fauconneau B, Andre S, Chmaitilly J, Lebail PY, Krieg F, Kaushik SJ (1997) Control of skeletal muscle fibres and adipose cells size in the flesh of rainbow trout. J Fish Biol 50:296–314

    Article  Google Scholar 

  • Faust IM, Johnson PR, Hirsch J (1980) Long-term effects of early nutritional experience on the development of obesity in the rat. J Nutr 110:2027–2034

    CAS  PubMed  Google Scholar 

  • Flynn MA, McNeil DA, Maloff B, Mutasingwa D, Wu M, Ford C, Tough SC (2006) Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with ‘best practice’ recommendations. Obes Rev 7(Suppl 1):7–66

    Article  PubMed  Google Scholar 

  • Flynn EJ, Trent CM, Rawls JF (2009) Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J Lipid Res 50(8):1641–1652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fruhbeck G, Gomez-Ambrosi J, Muruzabal FJ, Burrell MA (2001) The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab 280:E827–E847

    CAS  PubMed  Google Scholar 

  • Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131:242–256

    Article  CAS  PubMed  Google Scholar 

  • Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    CAS  PubMed  Google Scholar 

  • Grundy SM (2004) Obesity, metabolic syndrome, cardiovascular disease. J Clin Endocrinol Metab 89:2595–2600

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Liang XF, Fang L, Yuan X, Zhou Y, Zhang J, Li B (2013) Effects of dietary non-protein energy source levels on growth performance, body composition and lipid metabolism in herbivorous grass carp (Ctenopharyngodon idella). Aquac Res doi:10.1111/are.12275

  • Hillestad M, Johnsen F (1994) High-energy low-protein diets for atlantic salmon effects on growth, nutrient retention and slaughter quality. Aquaculture 124:109–116

    Article  Google Scholar 

  • Huang TS, Todorčević M, Ruyter B, Torstensen BE (2010) Altered expression of CCAAT/enhancer binding protein and FABP11 genes during adipogenesis in vitro in Atlantic salmon (Salmo salar). Aquac Nutr 16:72–80

    Article  CAS  Google Scholar 

  • Ibabe A, Bilbao E, Cajaraville MP (2005) Expression of peroxisome proliferator-activated receptors in zebrafish (Danio rerio) depending on gender and developmental stage. Histochem Cell Biol 123(1):75–87

    Article  CAS  PubMed  Google Scholar 

  • Imrie D, Sadler KC (2010) White adipose tissue development in zebrafish is regulated by both developmental time and fish size. Dev Dyn 239(11):3013–3023

    Article  PubMed Central  PubMed  Google Scholar 

  • Ji H, Cao YZ, Lin YQ, Liu P, Lu RH, Su SS, Yang GS, Oku H (2009a) Primary culture of grass carp preadipocyte in vitro. Acta Hydrobiol Sin 33(6):280–284

    Google Scholar 

  • Ji H, Su SS, Liu Q, Cao YZ, Yang GS, Lin YQ, Oku H (2009b) Study on the LPL gene expression and the influcence of fasting and refeeding on it in grass carp, Ctenopharyngodon idellas. J Fish China 33(6):980–986

    CAS  Google Scholar 

  • Kiess W, Petzold S, Töpfer M, Garten A, Blüher S, Kapellen T, Körner A, Kratzsch J (2008) Adipocytes and adipose tissue. Best Pract Res Clin Endocrinol Metab 22(1):135–153

    Article  CAS  PubMed  Google Scholar 

  • Lefterova MI, Lazar MA (2009) New developments in adipogenesis. Trends Endocrinol Metab 20:107–114

    Article  CAS  PubMed  Google Scholar 

  • Li Y (2012) Establishment and evaluation of a new model for studying lipogenesis in grass carp (Ctenopharyngodon idella) preadipocytes. Vitro Cell Dev Biol Anim 48(1):37–42

    Article  CAS  Google Scholar 

  • Liang XF, Oku H, Ogata HY (2002a) The effects of feeding condition and dietary lipid level on lipoprotein lipase gene expression in liver and visceral adipose tissue of red sea bream Pagrus major. Comp Biochem Physiol A 131:335–342

    Article  Google Scholar 

  • Liang XF, Ogata HY, Oku H (2002b) Effects of dietary fatty acids on lipoprotein lipase gene expression in liver and visceral adipose tissue of fed and starved red sea bream Pagrus major. Comp Biochem Physiol A 132:913–919

    Article  Google Scholar 

  • Lindberg A, Olivecrona G (2002) Lipoprotein lipase from rainbow trout differs in several respects from the enzyme in mammals. Gene 292:213–223

    Article  CAS  PubMed  Google Scholar 

  • McNeel RL, Ding ST, O’Brian Smith E, Mersmann HJ (2000) Expression of porcine adipocyte transcripts during differentiation in vitro and in vivo. Comp Biochem Physiol B 126(3):291–302

    Article  CAS  PubMed  Google Scholar 

  • Mohsen-Kanson T, Wdziekonski B, Villageois P, Hafner AL, Lay N, Martin P, Zaragosi LE, Billon N, Plaisant M, Peraldi P, Ladoux A, Dani C (2013) Development of adipose cells. In: Bastard JP, Fève B (eds) Physiology and physiopathology of adipose tissue. Springer, Paris, pp 3–16

    Google Scholar 

  • O’Connell J, Lynch L, Cawood TJ, Kwasnik A, Nolan N, Geoghegan J, McCormick A, O’Farrelly C, O’Shea D (2010) The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity. PLoS One 5:e9997

    Article  PubMed Central  PubMed  Google Scholar 

  • Oku H, Umino T (2008) Molecular characterization of peroxisome proliferator-activated receptors (PPARs) and theirgene expression in the differentiating adipocytes of red seabream Pagrus major. Comp Biochem Physiol B 151:268–277

    Article  PubMed  Google Scholar 

  • Oku H, Ogata HY, Liang XF (2002) Organization of the lipoprotein lipase gene of red sea bream Pagrus major. Comp Biochem Physiol B 131:775–785

    Article  PubMed  Google Scholar 

  • Oku H, Tokuda M, Okumura T, Umino T (2006) Effects of insulin, triiodothyronine and fat soluble vitamins on adipocyte differentiation and LPL gene expression in the stromal-vascular cells of red sea bream, Pagrus major. Comp Biochem Physiol 144:326–333

    Article  Google Scholar 

  • Paulauskis JD, Sul HS (1988) Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J Biol Chem 263(15):7049–7054

    CAS  PubMed  Google Scholar 

  • Rora AMB, Kvale A, Morkore T, Rorvik KA, Steien SH, Thomassen MS (1998) Process yield, colour and sensory quality of smoked Atlantic salmon (Salmo salar) in relation to raw material characteristics. Food Res Int 31:601–609

    Article  Google Scholar 

  • Rosen ED, Spiegelman BM (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444:847–853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saera-Vila A, Calduch-Giner JA, Gómez-Requeni P, Médale F, Kaushik S, Pérez-Sánchez J (2005) Molecular characterization of gilthead sea bream (Sparus aurata) lipoprotein lipase. Transcriptional regulation by season and nutritional condition in skeletal muscle and fat storage tissues. Comp Biochem Physiol B 142:224–232

    Article  PubMed  Google Scholar 

  • Salmerón C, Acerete L, Gutiérrez J, Navarro I, Capilla E (2013) Characterization and endocrine regulation of proliferation and differentiation of primary cultured preadipocytes from gilthead sea bream (Sparus aurata). Domest Anim Endocrinol 45:1–10

    Article  PubMed  Google Scholar 

  • Seeberger KL, Dufour JM, Shapiro AM, Lakey JR, Rajotte RV, Korbutt GS (2006) Expansion of mesenchymal stem cells from human pancreatic ductal epithelium. Lab Invest 86:141–153

    Article  CAS  PubMed  Google Scholar 

  • Siersbæk R, Nielsen R, Mandrup S (2010) PPAR γ in adipocyte differentiation and metabolism—novel insights from genome-wide studies. FEBS Lett 584:3242–3249

    Article  PubMed  Google Scholar 

  • Smith S, Witkowski A, Joshi AK (2003) Structural and functional organization of the animal fatty acid synthase. Progr Lipid Res 42:289–317

    Article  CAS  Google Scholar 

  • Song Y, Cone RD (2007) Creation of a genetic model of obesity in a teleost. Faseb J 21:2042–2049

    Article  CAS  PubMed  Google Scholar 

  • Todorčević M, Kjaer MA, Djaković N, Vegusdal A, Torstensen BE, Ruyter B (2009) N-3 HUFAs affect fat deposition, susceptibility to oxidative stress, and apoptosis in Atlantic salmon visceral adipose tissue. Comp Biochem Physiol B Biochem Mol Biol 152(2):135–143

  • Todorčević M, Škugor S, Ruyter B (2010) Alterations in oxidative stress status modulate terminal differentiation in Atlantic salmon adipocytes cultivated in media rich in n-3 fatty acids. Comp Biochem Physiol B 156:309–318

  • Todorčević M, Vegusdal A, Gjøen T, Sundvold H, Torstensen BE, Kjaer MA, Ruyter B (2008) Changes in fatty acids metabolism during differentiation of Atlantic salmon preadipocytes; effects of n-3 and n-9 fatty acids. Biochim Biophys Acta 1781(6):326–335

    PubMed  Google Scholar 

  • Umino T, Nakagawa H, Arai K (1996) Development of adipose tissue in the juvenile red sea bream. Fish Sci 62(4):520–523

    CAS  Google Scholar 

  • Vegusdal A, Sundvold H, Gjøen T, Ruyter B (2003) An in vitro method for studying the proliferation and differentiation of Atlantic salmon preadipocytes. Lipids 38:289–296

    Article  CAS  PubMed  Google Scholar 

  • Wabitsch M, Heinze E, Hauner H, Shymko RM, Teller WM, De Meyts P, Ilondo MM (1996) Biological effects of human growth hormone in rat adipocyte precursor cells and newly differentiated adipocytes in primary culture. Metabolism 45:34–42

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Huang M, Wang Y (2012) The Effect of insulin, TNF α and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena Crocea R.). PLoS One 7:e48069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would thank Li Chao, Wang Yifei, and Yu Ping for their assistance in the study. This study was supported by the National Nature Science Foundation of China (NSFC, Grant Number 31072223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Ji, H., Li, C. et al. Ontogenetic development of adipose tissue in grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem 41, 867–878 (2015). https://doi.org/10.1007/s10695-015-0053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-015-0053-x

Keywords

Navigation