Skip to main content
Log in

Development of digestive enzyme activity in spotted rose snapper, Lutjanus guttatus (Steindachner, 1869) larvae

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

We describe digestive enzyme activity during the larval development of spotted rose snapper, Lutjanus guttatus. Trypsin, chymotrypsin, leucine aminopeptidase, pepsin, amylase, lipase, and acid and alkaline phosphatase activities were evaluated using spectrophotometric techniques from hatching through 30 days. The spotted rose snapper larvae present the same pattern of digestive enzyme activity previously reported for other species in which pancreatic (i.e., trypsin, chymotrypsin, amylase, and lipase) and intestinal (i.e., acid and alkaline phosphatases and leucine aminopeptidase) enzymatic activities are present from hatching allowing the larvae to digest and absorb nutrients in the yolk-sac and live prey by the time of first feeding. The digestive and absorption capacity of the spotted rose snapper increases during the larval development. A significant increase in individual activity of all enzymes occurs at 20 DAH, and around 25 DAH, the juvenile-type of digestion is observed with the appearance of pepsin secreted by the stomach, suggesting that maturation of the digestive function occurs around 20–25 DAH. Our results are in agreement with a previous suggestion that early weaning may be possible from 20 DAH. However, the patterns of enzymatic activities reported in our study should be considered during the formulation of an artificial diet for early weaning of the spotted rose snapper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Álvarez-González CA, Cervantes-Trujano M, Tovar-Ramírez D, Conklin DE, Nolasco H, Gisbert E, Piedrahita R (2006) Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiol Biochem 31:83–93

    Google Scholar 

  • Álvarez-González CA, Moyano-López FJ, Civera-Cerecedo R, Carrasco-Chávez V, Ortiz-Galindo JL, Dumas S (2008) Development of digestive enzyme activity in larvae of spotted sand bass Paralabrax maculatofasciatus I Biochemical analysis. Fish Physiol Biochem 34:373–384

    Article  PubMed  Google Scholar 

  • Alvarez-Lajonchère L, Chávez-Sánchez MC, Abdo-de la Parra MI, García-Aguilar N, Ibarra-Castro L, Rodríguez-Ibarra LE, Velazco-Blanco G, Ibarra A (2010) Pilot-scale marine finfish hatchery at Mazatlán, México. World Aquac 41(26–29):71–72

    Google Scholar 

  • Álvarez-Lajonchère L, Abdo-de la Parra MI, Rodríguez-Ibarra LE, Velasco-Blanco G, Puello-Cruz AC, González-Rodríguez B, Ibarra-Soto A, Ibarra-Castro L (2012) The scale-up of spotted rose snapper, Lutjanus guttatus, larval rearing at Mazatlan, Mexico. J World Aquac Soc 43(3):411–422

    Article  Google Scholar 

  • Anson ML (1938) The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 22:79–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Applebaum SL, Perez R, Lazo JP, Holt GJ (2001) Characterization of chemotrypsin activity during early ontogeny of larval red drum (Sciaenops ocellatus). Fish Physiol Biochem 25:291–300

    Article  Google Scholar 

  • Ásgeirsson B, Bjarnason B (1991) Structural and kinetic properties of chymotrypsin from atlantic cod (Gadus morhua). Comparison with bovine chymotrypsin. Comp Biochem Physiol 99B:327–335

    Google Scholar 

  • Bergmeyer HU, Gawehn K, Grassel M (1974) Method of enzymatic analysis. Academic, New York

    Google Scholar 

  • Bolasina S, Pérez A, Yamashita Y (2006) Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder, Paralichthys olivaceus. Aquaculture 252:503–515

    Article  CAS  Google Scholar 

  • Bouchet V, Zambonino-Infante JL, Cahu CL (2000) Effect of the lipid level in a compound diet on the development of red drum (Sciaenops ocellatus) larvae. Aquaculture 184:339–347

    Google Scholar 

  • Boza-Abarca J, Calvo-Vargas E, Solis-Ortiz N, Komen J (2008) Induced spawning and larval rearing of spotted rose snapper, Lutjanus guttatus, at the Marine Biology Station, Puntarenas, Costa Rica. Cienc Mar 34(2):239–252

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cahu CL, Zambonino-Infante JL (1994) Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp Biochem Physiol 109A:213–222

    Article  CAS  Google Scholar 

  • Cahu CL, Zambonino-Infante JL (1995) Effect of the molecular form of dietary nitrogen supply in sea bass larvae: response of pancreatic enzymes and intestinal peptidases. Fish Physiol Biochem 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Carnevali O, Mosconi G, Cardinali M, Meiri I, Polzonetti-Magni A (2001) Molecular components related to egg viability in the Gilthead sea bream, Sparus aurata. Mol Rep Dev 58:330–335

    Article  CAS  Google Scholar 

  • Chen BN, Qin JG, Kumar MS, Hutchinson WG, Clarke SM (2006) Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae. Aquaculture 260:264–271

    Article  CAS  Google Scholar 

  • Cousin JCB, Baudin-Laurencin F, Gabaudan J (1987) Ontogeny of enzymatic activities in fed and fasting turbot Scophthalmus maximus L. J Fish Biol 30:15–33

    Article  CAS  Google Scholar 

  • Cuvier-Péres A, Kestemont P (2002) Development of some digestive enzymes in Eurasian perch larvae Perca fluviatilis. Fish Physiol Biochem 24:279–285

    Article  Google Scholar 

  • Díaz M, Moyano FJ, García-Carreño FL, Alarcón FJ, Sarasquete MC (1997) Substrate-SDS-PAGE determination of protease activity through larval development in sea bream. Aquac Int 5:461–471

    Article  Google Scholar 

  • Díaz JP, Mani-Ponset L, Blasco C, Connes R (2002) Cytological detection of the main phases of lipid metabolism during early post-embryonic development in three teleost species Dicentrarchus labrax, Sparus aurata and Stizostedion lucioperca. Aquat Living Resour 15:196–178

  • Erlanger B, Kokowsky N, Cohen W (1961) The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 95:271–278

    Article  CAS  PubMed  Google Scholar 

  • Galaviz MA, García-Gasca A, Drawbridge M, Álvarez-González CA, López L (2011) Ontogeny of the digestive tract and and enzymatic activity in White seabass, Atractoscion nobilis, larvae. Aquaculture 318:162–168

    Article  CAS  Google Scholar 

  • Galaviz MA, García-Ortega A, Gisbert E, López LM, García-Gasca A (2012) Expression and activity of trypsin and pepsin during larval development of the spotted rose snapper Lutjanus guttatus. Comp Biochem Physiol 161B:9–16

    Article  Google Scholar 

  • García-Gasca A, Galaviz MA, Gutiérrez JN, García-Ortega A (2006) Development of the digestive tract, trypsin activity and gene expression in eggs and larvae of the bullseye puffer fish Sphoeroides annulatus. Aquaculture 251:366–376

    Article  Google Scholar 

  • García-Ortega A (2009) Nutrition and feeding research in the spotted rose snapper (Lutjanus guttatus) and bullseye puffer (Sphoeroides annulatus), new species for marine aquaculture. Fish Physiol Biochem 35:69–80

    Article  PubMed  Google Scholar 

  • Gawlicka A, Parent B, Horn MH, Ross N, Opstad I, Torrissen OJ (2000) Activity of digestive enzymes in yolk-sac larvae of Atlantic halibut (Hippoglossus hippoglossus): indication of readiness for first feeding. Aquaculture 184:303–314

    Article  CAS  Google Scholar 

  • Gisbert E, Sarasquete MC, Willot P, Castelló-Orvay F (1999) Histochemistry of the development of the digestive system of Siberian sturgeon during ontogeny. J Fish Biol 55:596–616

    Article  Google Scholar 

  • Gisbert E, Giménez G, Fernández I, Kotzamanis Y, Estévez A (2009) Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture 287:381–387

    Article  CAS  Google Scholar 

  • Ibarra-Castro L, Álvarez-Lajonchère L (2011) GnRHa-induced multiple spawns and volition spawning of captive spotted rose snapper, Lutjanus guttatus, at Mazatlan, Mexico. J World Aquac Soc 42(4):564–574

    Article  Google Scholar 

  • Ibarra-Castro L, Duncan NJ (2007) GnRHa-induced spawning of wild-caught spotted rose snapper Lutjanus guttatus. Aquaculture 272:737–746

    Article  CAS  Google Scholar 

  • Kim BG, Divakaran S, Brown CL, Ostrowski AC (2001) Comparative digestive enzyme ontogeny in two marine larval fishes: Pacific threadfin (Polydactylus sexfilis) and bluefin trevally (Caranx melampygus). Fish Physiol Biochem 24:225–241

    Article  CAS  Google Scholar 

  • Lazo JP, Mendoza R, Holt GJ, Aguilera C, Arnold CR (2007) Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture 265:194–205

    Article  CAS  Google Scholar 

  • López-Ramírez G, Cuenca-Soria CA, Álvarez-González CA, Tovar-Ramírez D, Ortíz-Galindo JL, Perales-García N, Márquez-Couturier G, Arias-Rodríguez L, Indy JR, Contreras Sánchez WM, Gisbert E, Moyano FJ (2011) Development of digestive enzymes in larvae of Mayan cichlid Cichlasoma urophthalmus. Fish Physiol Biochem 37:197–208

    Article  PubMed  Google Scholar 

  • Maraux S, Louvard D, Baratti J (1973) The aminopeptidase from hog-intestinal brush border. Biochim Biophyis Acta 321:282–295

    Article  Google Scholar 

  • Martínez I, Moyano FJ, Fernández-Díaz C, Yúfera M (1999) Digestive enzyme activity during larval development of the Senegal sole (Solea senegalensis). Fish Physiol Biochem 21:317–323

    Article  Google Scholar 

  • Moguel-Hernández I, Peña R, Dumas S, Nolasco-Soria H, Hinojosa P, Contreras-Olguín M. (2009) Development of digestive enzymatic activity in the Pacific red snapper Lutjanus peru. In: Hendry C I, Van Stappen G, Wille M, Sorgeloos P (eds) LARVI’09—Fish and Shellfish Larviculture Symposium. European Aquaculture Society, Special Publication No. 38, Oostende, Belgium, 2009

  • Moyano FJ, Díaz M, Alarcón FJ, Sarasquete MC (1996) Characterization of digestive enzyme activity during larval development of gilthead seabream (Sparus aurata). Fish Physiol Biochem 15:121–130

    Article  CAS  PubMed  Google Scholar 

  • Naz M (2009) Ontogeny of biochemical phases of fertilized eggs and yolk sac larvae of Gilthead seabream (Sparus aurata L.). Turk J Fish Aqua Sci 9:77–83

    Google Scholar 

  • Oozeki Y, Bailey K (1995) Ontogenetic development of digestive enzyme activities in larval walleye Pollock Theragra chalcogramma. Mar Biol 122:177–186

    CAS  Google Scholar 

  • Peña R, Dumas S, Villalejo-Fuerte M, Ortíz-Galindo JL (2003) Ontogenetic development of the digestive tract in reared spotted sand bass Paralabrax maculatofasciatus larvae. Aquaculture 219:233–244

    Article  Google Scholar 

  • Peña R, Dumas S, Rodríguez-Jaramillo C (2009) Development and distribution of intestinal enzymatic activity in Paralabrax maculatofasciatus (Steindachner, 1868) larvae fed with live prey. Aquac Res 40:218–224

    Article  Google Scholar 

  • Péres A, Cahu CL, Zambonino-Infante JL, Legall MM, Quazuguel P (1996) Amylase and trypsin response to intake of dietary carbohydrate and protein depend on the developmental stage in sea bass (Dicentrarchus labrax) larvae. Fish Physiol Biochem 15:237–242

    Article  PubMed  Google Scholar 

  • Perez-Casanova JC, Murray HM, Gallant JW, Ross NW, Douglas SE, Johnson SC (2006) Development of the digestive capacity in larvae of haddock (Melanogrammus aeglefinus) and Atlantic cod (Gadus morhua). Aquaculture 251:377–401

    Article  Google Scholar 

  • Ribeiro L, Zambonino-Infante JL, Cahu C, Dinis MT (1999) Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858. Aquaculture 179:465–473

    Article  CAS  Google Scholar 

  • Savoie A, Le Francois NR, Cahu C, Blier PU (2008) Metabolic and digestive enzyme activity profiles of newly hatched spotted wolffish (Anarhichas minor Olafsen): effect of temperature. Aquac Res 39(4):382–389

    Article  CAS  Google Scholar 

  • Segner H, Rösch R, Schmidt H, von Poeppinghausen KJ (1989) Digestive enzymes in larval Coregonus lavaretus L. J Fish Biol 35:249–263

    Article  CAS  Google Scholar 

  • Shan XJ, Huang W, Cao L, Xiao ZZ, Dou SZ (2009) Ontogenetic development of digestive enzymes and effect of starvation in miiuy croaker Miichthys miiuy larvae. Fish Physiol Biochem 35:385–398

    Article  CAS  PubMed  Google Scholar 

  • Suzer C, Firat K, Saka S (2006) Ontogenic development of the digestive enzymes in common pandora, Pagellus erythrinus, L. larvae. Aquacult Res 37:1565–1571

    Google Scholar 

  • Suzer C, Kamaci HO, Coban D, Saka S, Firat K, Özkara B, Özkara A (2007) Digestive enzyme activity of the red porgy (Pagrus pagrus, L.) during larval development under culture conditions. Aquacult Res 38:1778–1785

    Article  CAS  Google Scholar 

  • Uscanga-Martínez A, Perales-García N, Alvarez-González CA, Moyano FJ, Tovar-Ramírez D, Gisbert E, Márquez-Couturier G, Contreras-Sánchez WM, Arias-Rodríguez L, Indy JR (2011) Changes in digestive enzyme activity during initial ontogeny of bay snook Petenia splendita. Fish Physiol Biochem 37:667–680

    Article  PubMed  Google Scholar 

  • Vega-Villasante F, Nolasco H, Civera R (1993) The digestive enzymes of the Pacific brown shrimp Penaeus californiensis. I. Properties of amylase activity in the digestive tract. Comp Biochem Physiol 106B:547–550

    CAS  Google Scholar 

  • Versaw W, Cuppett SL, Winters DD, Williams LE (1989) An improved colorimetric assay for bacterial lipase in nonfat dry milk. J Food Sci 54:232–254

    Article  Google Scholar 

  • Walford J, Lam TJ (1993) Development of digestive tract and proteolytic enzyme activity in sea bass (Lates calcarifer) larvae and juveniles. Aquaculture 109:187–205

    Article  CAS  Google Scholar 

  • Zambonino-Infante JL, Cahu CL (1994) Influence of diet on pepsin and some pancreatic enzymes in sea bass (Dicentrarchus labrax) larvae. Comp Biochem Physiol 109A:209–212

    Article  CAS  Google Scholar 

  • Zambonino-Infante JL, Cahu CL (2001) Ontogeny of the gastrointestinal tract of marine fish larvae. Comp Biochem Physiol 130C:477–487

    CAS  Google Scholar 

Download references

Acknowledgments

The SIP-Instituto Politécnico Nacional project number 20121585 supported this study. I.M.H. is a recipient of PIFI-IPN and CONACYT doctoral fellowships. I.Z.L. is a recipient of a CONACYT postdoctoral fellowship. S.D. and R.P are COFAA-IPN and EDI-IPN fellows. The technical assistance of Patricia Hinojosa Baltazar is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moguel-Hernández, I., Peña, R., Nolasco-Soria, H. et al. Development of digestive enzyme activity in spotted rose snapper, Lutjanus guttatus (Steindachner, 1869) larvae. Fish Physiol Biochem 40, 839–848 (2014). https://doi.org/10.1007/s10695-013-9890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-013-9890-7

Keywords

Navigation