Skip to main content
Log in

In vivo protective effect of dietary curcumin in fish Anabas testudineus (Bloch)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The present study describes, for the first time, the protective effect of natural curcumin in vivo in a lower vertebrate, a teleost, Anabas testudineus (Bloch). Two doses of curcumin 0.5 and 1% were supplemented in the 40% protein feed and fed to fish for the periods, 2 and 8 weeks. The antioxidant status, protein content, and the tissue structure in experimental fish were examined after the short-term and long-term feeding. In all the curcumin fed groups, the lipid peroxidation product, thiobarbituric acid reactive substances content either decreased or unaffected. The glutathione content increased while the antioxidant enzyme activity pattern varied with time and dose. The histological analysis also confirmed the safety of curcumin retaining the normal arrangement of hepatocytes, hepatopancreas, macrophage–melanocyte centers in Anabas. The improved antioxidant status and protein content suggest a favorable effect for curcumin in cultured fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahuja KD, Kunde DA, Ball MJ, Geraghty DP (2006) Effects of capsaicin, dihydrocapsaicin, and curcumin on copper-induced oxidation of human serum lipids. J Agric Food Chem 54:6436–6439

    Article  PubMed  CAS  Google Scholar 

  • Allen PC, Danforth HD, Augustine PC (1998) Dietary modulation of avian coccidiosis. Int J Parasitol 28:1131–1140

    Article  PubMed  CAS  Google Scholar 

  • AL-Sultan SI (2003) The effect of Curcuma longa (turmeric) on overall performance of broiler chickens. Int J Poult Sci 5:351–353

    Google Scholar 

  • Ambegaokar SS, Wu L, Alamshahi K, Lau J, Jazayeri L, Chan S, Khanna P, Hsieh E, Timiras PS (2003) Curcumin inhibits dose-dependently and time dependently neuroglial cell proliferation and growth. Neuro Endocrinol Lett 24:469–473

    PubMed  CAS  Google Scholar 

  • Antunes LMG, Dias FL, Takahashi CS (1999) Potentiation by turmeric and curcumin of radiation induced chromosome aberration in Chinese hamster ovary cells. Teratogen Carcin Mut 19:9–18

    Article  Google Scholar 

  • Apisariyakul A, Vanittanakom N, Buddhasukh D (1995) Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacol 49(3):163–169

    Article  PubMed  CAS  Google Scholar 

  • Araujo MC, Dias FL, Kronka SN, Takahashi CS (1999a) Effect of turmeric and its active principle, curcumin on bleomycin induced chromosome aberrations in Chinese hamster ovary cells. Genet Mol Biol 22:407–413

    Article  CAS  Google Scholar 

  • Araujo MC, Dias FL, Takahashi CS (1999b) Potentiation of turmeric and curcumin of γ-radiation induced chromosome aberrations in Chinese hamster ovary cells. Teratogenesis Carcinog Mutagen 19:9–18

    Article  PubMed  CAS  Google Scholar 

  • Bandyopadhyay U, Das D, Banerjee RK (1999) Reactive oxygen species: oxidative damage and pathogenesis. Curr Sci 77:658–666

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–278

    Article  PubMed  CAS  Google Scholar 

  • Benke GM, Cheevar KC (1974) Comparative toxicity, anti-cholinesterase action and metabolism of methyl parathion and parathion in sun fish and mice. Toxicol Appl Pharmacol 28:97–109

    Article  PubMed  CAS  Google Scholar 

  • Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J fish diseases 22:25–34

    Article  Google Scholar 

  • Bhavanishankar TN, Shanta NV, Ramesh HP, Murthy Indira AS, Sreenivasmurthy V (1980) Toxicity studies on turmeric (Curcuma longa): Acute toxicity studies in rats, guinea pigs and monkeys. Ind J Exp Biol 18:73–75

    Google Scholar 

  • Bille N, Larsen JC, Hansen EV, Wurtzen G (1985) Subchronic oral toxicity of turmeric oleoresin in pigs. Food Chem Toxicol 23:967–973

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Clark G (ed) (1981) Staining procedures used by the Biological Stains Commission In: Staining procedures, 4th edn. Williams and Wilkins, Baltimore, pp 471–472

  • D’Souza HP, Prabhu HR (2006) In vitro inhibition of lipid peroxidation in fish by turmeric (Curcuma longa). Indian J Clin Biochem 21(2):138–141

    Article  Google Scholar 

  • David M, Richard JS (1983) Glutathione reductase. Method Enzymol Anal 3:258–265

    Google Scholar 

  • Deshpande UR, Gadre SG, Raste AS, Pillai D, Bhide SV, Samuel AM (1998) Protective effect of turmeric (Curcuma longa L.) extract on carbon tetrachloride induced liver damage in rats. Ind Exp Biol 36:573–577

    CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F test. Biometrics 11:1–42

    Article  Google Scholar 

  • Elizabeth K, Rao MNA (1990) Oxygen radical scavenging activity of curcumin. Int J Pharm 58:237–240

    Article  Google Scholar 

  • Eshrat H, Ali Hussain M (2002) Hypoglycemic, hypolipidemic and antioxidant properties of combination of curcumin from Curcuma longa, linn, and partially purified product from Abroma augusta, linn. in streptozotocin induced diabetes. Indian J Clin Biochem 17(2):33–43

    Article  Google Scholar 

  • Gabriel O (1971) Analytical disc gel electrophoresis. Methods Enzymol 22:565–578

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186:59–85

    Google Scholar 

  • Hardy R (1980) Fish feed formulation. Lectures presented at the FAO/UNDP Training course in fish feed technology, held at the College of Fisheries. University of Washington, Seattle, pp 233–240

    Google Scholar 

  • Johnson C (2004) Influence of certain plant extract on growth and metabolism of teleosts (Anabas testudineus and Labeo rohita) and a mammal (Rattus norvegicus). Ph.D thesis, University of Kerala, Thiruvananthapuram, Kerala, India

  • Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    PubMed  CAS  Google Scholar 

  • Kamalakkannan N, Rajagopalan R, Suresh PV, Viswanathan P, Rajasekharan KN, Menon VP (2005) Comparative Effects of curcumin and an analogue of curcumin in carbon tetrachloride-induced hepatotoxicity in rats. Basic Clin Pharmacol Toxicol 97(1):15–21

    Article  PubMed  CAS  Google Scholar 

  • Kandarkar SV, Sharda SS, Ingle AD, Deshpande SS, Maru GB (1998) Subchronic oral hepatotoxicity of turmeric in mice—histopathological and ultrastructural studies. Ind J Exp Biol 36:675–679

    CAS  Google Scholar 

  • Kato K, Ito H, Kamei K, Iwamoto I (1998) Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues in vivo. Cell Stress Chap 3:152–160

    Article  CAS  Google Scholar 

  • Kelloff GJ, Crowell JA, Steele VE, Lubet RA, Malone WA, Boone CW et al (2000) Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J Nutr 130:467S–471S

    PubMed  CAS  Google Scholar 

  • Kelly MR, Xu J, Alexander KE, Loo G (2001) Disparate effects of similar phenolic phytochemicals as inhibitors of oxidative damage to cellular DNA. Mut Res 485:309–318

    CAS  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  • Livingstone DR (2001) Contaminant stimulated reactive oxygen production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666

    Article  PubMed  CAS  Google Scholar 

  • Livingstone DR (2003) Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Rev Med Vet 154:427–430

    CAS  Google Scholar 

  • Maehly A, Chance B (1954) The assay of catalases and peroxidases. Methods Biochem Anal 1:357–424

    Article  PubMed  CAS  Google Scholar 

  • Manju M, Sherin TG, Rajeesha KN, Sreejith P, Rajasekharan KN, Oommen OV (2008a) Curcumin and its derivatives prevent hepatocyte lipid peroxidation in Anabas testudineus. J Fish Biol 73:1701–1713

    Article  CAS  Google Scholar 

  • Manju M, sherin TG, Rajasekharan KN, Oommen OV (2008b) Curcumin analogue inhibits lipid peroxidation in a freshwater teleost, Anabas testudineus (Bloch)—an in vitro and in vivo study. Fish Physiol Biochem. doi:10.1007/s10695-008-9266-6

  • Mishra HP, Fridovich I (1977) Superoxide dismutase and peroxidase; a positive activity staining applicable to poly acrylamide gel electrophorograms. Arch Biochem Bio phys 183:511–515

    Article  Google Scholar 

  • Motterlini R, Foresti R, Bassi R, Green CJ (2000) Curcumin, an antioxidant and anti-inflammatory agent induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 28:1303–1312

    Article  PubMed  CAS  Google Scholar 

  • Nichans WG, Samuelsson B (1968) Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130

    Article  Google Scholar 

  • Park EJ, Jeon CH, Ko G, Kim J, Sohn DH (2000) Protective effect of curcumin in rat liver injury induced by carbon tetrachloride. J Pharm Pharmacol 52:437–440

    Article  PubMed  CAS  Google Scholar 

  • Pulla Reddy AC, Lokesh BR (1992) Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Mol Cell Biochem 111:117–124

    Article  Google Scholar 

  • Ramý′rez-Tortosa MC, Mesa MD, Aguilera MC, Quiles JL, Baro′ L, Ramirez-Tortosa CL et al (1999) Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis 147:371–378

    Article  Google Scholar 

  • Rasmussen HB, Christensen SB, Kvist LP, Karazmi A (2000) A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med 66:396–398

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi AL, Morse MA, Fields HW, Rothas DA, Pei P, Rodrigo KA, Renner RJ, Mallery SR (2002) Curcumin activates the aryl hydrocarbon receptor yet significantly inhibits (−)-Benzo(a)pyrene-7R-trans-7,8-dihydrodiol bioactivation in oral squamous cell carcinoma cells and oral mucosa. Cancer Res 62:5451–5456

    PubMed  CAS  Google Scholar 

  • Ruby JA, Kuttan G, Dinesh Babu KV, Rajasekharan KN, Kuttan R (1995) Anti-tumour and free radical scavenging activity of synthetic curcuminoids. Int J Pharm 131:1–7

    Google Scholar 

  • Ruby JA, Kuttan G, Dinesh Babu KV, Rajasekharan KN, Kuttan R (1998) Anti-inflammatory activity of natural and synthetic curcuminoids. Pharm Pharmacol Commun 4:103–106

    Google Scholar 

  • Soudamini KK, Kuttan R (1989) Inhibition of chemical carcinogenesis by curcumin. J Ethnopharmacol 27:227–233

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Elwell JH, Oberley LW (1988) A simultaneous visualization of the antioxidant enzymes glutathione peroxidase and catalase on polyacrylamide gels. Free Radic Res Commun 5:67–75

    Article  PubMed  CAS  Google Scholar 

  • Swarnakar S, Ganguly K, Kundu P, Banerjee A, Maity P, Sharma AV (2005) Curcumin regulates expression and activity of matrix metalloproteinase 9 and 2 during prevention and healing of indomethacin-induced gastric ulcer. J Biol Chem 280:9409–9415

    Article  PubMed  CAS  Google Scholar 

  • Urbina-Cano P, Morales BL, Herrera MA, Rivera JR, Magna ML, Sanroman R, Rivera A (2006) DNA damage in mouse lymphocytes exposed to curcumin and copper. J Appl Genet 47:377–382

    Article  PubMed  Google Scholar 

  • Wahlstrom B, Blennow G (1978) A study on the fate of curcumin in the rat. Acta Pharmcol Toxicol 43:86–92

    Article  CAS  Google Scholar 

  • Weston DP (1996) Ecological effects of the use of chemicals in aquaculture. In: Use of chemicals in aquaculture in Asia. Arthur JR, Lavilla-Pitogo CR, Subasinghe RP (eds) Proceedings of the Meeting on the Use of chemicals in aquaculture in Asia 20–22 May 1996. Tigbauan, Iloilo, Philippines

Download references

Acknowledgments

The authors are grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi for providing the Senior Research Fellowship (M.M) and University Grants Commission–Special Assistance Programme (UGC-SAP) for the infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oommen Vilaverthottathil Oommen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manju, M., Akbarsha, M.A. & Oommen, O.V. In vivo protective effect of dietary curcumin in fish Anabas testudineus (Bloch). Fish Physiol Biochem 38, 309–318 (2012). https://doi.org/10.1007/s10695-011-9508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-011-9508-x

Keywords

Navigation