Skip to main content
Log in

Estradiol and triiodothyronine differentially modulate reproductive and thyroidal genes in male goldfish

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

While the reproductive and thyroidal systems are extensively studied in fish, they are largely studied in isolation from one another, but there is evidence supporting cross-regulation between these two systems. To better understand hormone action and the potential cross-regulation between estrogen and thyroid hormones, we examined gene expression changes in estrogen receptor (ER) and thyroid receptor (TR) subtypes and key enzymes responsible for the local synthesis and availability of estrogen and thyroid hormones (aromatase B and deiodinase, respectively) in sexually regressed, adult, male goldfish in response to 3 days waterborne exposures to 17β-estradiol (E2; 1 nM), triiodothyronine (T3; 20 and 100 nM), and co-treatments thereof. Treatments with E2 alone did not effect ER subtype transcripts in the liver, telencephalon, or testis; however, in the testis, 1 nM T3 decreased ERα and ERβ1 and co-treatments of T3 and E2 decreased ERβ1 levels. TRα-1 and TRβ transcripts were not auto-regulated by T3 or cross-regulated by E2. Although deiodinase type I levels were also unaffected, deiodinase type II decreased in response to T3 treatments. Liver deiodinase type III transcripts increased in response to T3 treatments, while E2 exhibited antagonistic effects on this T3-mediated induction. These results provide novel evidence of cross-talk between the reproductive and thyroid endocrine axes in a model teleost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Auger AP, Tetel MJ, McCarthy MM (2000) Steroid receptor coactivator-1 (src-1) mediates the development of sex-specific brain morphology and behavior. Proc Nat Acad Sci USA 97(13):7551–7555

    Article  PubMed  CAS  Google Scholar 

  • Baldwin LA, Kostecki PT, Calabrese EJ (1993) The effect of peroxisome proliferators on s-phase synthesis in primary cultures of fish hepatocytes. Ecotoxicol Environ Saf 25(2):193–201

    Article  PubMed  CAS  Google Scholar 

  • Blanton ML, Specker JL (2007) The hypothalamic-pituitary-thyroid (hpt) axis in fish and its role in fish development and reproduction. Crit Rev Toxicol 37(1–2):97–115

    Article  PubMed  CAS  Google Scholar 

  • Bres O, Plohman JC, Eales JG (2006) A cDNA for a putative type iii deiodinase in the trout (oncorhynchus mykiss): influence of holding conditions and thyroid hormone treatment on its hepatic expression. Gen Comp Endocrinol 145(1):92–100

    Article  PubMed  CAS  Google Scholar 

  • Callard GV, Tchoudakova AV, Kishida M, Wood E (2001) Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish. J Steroid Biochem 79(1–5):305–314

    CAS  Google Scholar 

  • Choi CY, Habibi HR (2003) Molecular cloning of estrogen receptor alpha and expression pattern of estrogen receptor subtypes in male and female goldfish. Mol Cell Endocrinol 204(1–2):169–177

    Article  PubMed  CAS  Google Scholar 

  • Cyr DG, Eales JG (1988) The influence of thyroidal status on ovarian function in rainbow trout, salmo gairdneri. J Exp Zool 248:81–87

    Article  CAS  Google Scholar 

  • Cyr DG, Eales JG (1996) Interrelationships between thyroidal and reproductive endocrine systems in fish. Rev Fish Biol Fish 6:165–200

    Article  Google Scholar 

  • Cyr DG, MacLatchy DL, Eales JG (1988) The influence of short-term 17 beta-estradiol treatment on plasma t3 levels and in vitro hepatic t4 5’-monodeiodinase activity in immature rainbow trout, salmo gairdneri. Gen Comp Endocrinol 69(3):431–438

    Article  PubMed  CAS  Google Scholar 

  • Eales JG (2006) Modes of action and physiological effects of thyroid hormones in fish. In: Reinecke M, Zaccone G, Kapoor BG (eds) Fish endocrinology, vol 2. Science Publishers, Enfield, pp 669–808

    Google Scholar 

  • Fujiwara N (1980) Effects of thyroid hormones on gonad and the secondary sex characteristic of medaka oryzias-latipes. Biol J Nara Women’s Univ (29–30):1–2

  • Garcia GC, Jeziorski MC, Valverde RC, Orozco A (2004) Effects of iodothyronines on the hepatic outer-ring deiodinating pathway in killifish. Gen Comp Endocrinol 135(2):201–209

    Article  Google Scholar 

  • Gelinas D, Pitoc GA, Callard GV (1998) Isolation of a goldfish brain cytochrome p450 aromatase cDNA: mRNA expression during the seasonal cycle and after steroid treatment. Mol Cell Endocrinol 138(1–2):81–93

    Article  PubMed  CAS  Google Scholar 

  • Glass CK, Holloway JM, Devary OV, Rosenfeld MG (1988) The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54(3):313–323

    Article  PubMed  CAS  Google Scholar 

  • Hall JM, McDonnell DP, Korach KS (2002) Allosteric regulation of estrogen receptor structure, function, and coactivator recruitment by different estrogen response elements. Mol Endocrinol 16(3):469–486

    Article  PubMed  CAS  Google Scholar 

  • Hawkins MB, Thornton JW, Crews D, Skipper JK, Dotte A et al (2000) Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts. Proc Nat Acad Sci USA 97(20):10751–10756

    Article  PubMed  CAS  Google Scholar 

  • Hess RA (2003) Estrogen in the adult male reproductive tract: a review. Reprod Biol Endocrinol 1:52

    Article  PubMed  Google Scholar 

  • Lanno RP, Dixon DG (1994) Chronic toxicity of waterborne thiocyanate to fathead minnow (Pimephales promelas): a partial life-cycle study. Environ Toxicol Chem 13(9):1423–1432

    Article  CAS  Google Scholar 

  • Leatherland JF (1985) Effects of 17 beta-estradiol and methyl testosterone on the activity of the thyroid gland in rainbow trout, Salmo gairdneri richardson. Gen Comp Endocrinol 60(3):343–352

    Article  PubMed  CAS  Google Scholar 

  • Ma CH, Dong KW, Yu KL (2000) cDNA cloning and expression of a novel estrogen receptor beta-subtype in goldfish (Carassius auratus). Biochim Biophys Acta 1490(1–2):145–152

    PubMed  CAS  Google Scholar 

  • Marlatt VL, Martyniuk CJ, Zhang D, Xiong H, Watt J et al (2008) Auto-regulation of estrogen receptor subtypes and gene expression profiling of 17beta-estradiol action in the neuroendocrine axis of male goldfish. Mol Cell Endocrinol 283(1–2):38–48

    Article  PubMed  CAS  Google Scholar 

  • Marlatt VL, Lakoff J, Crump K, Martyniuk CJ, Watt J et al (2010) Sex- and tissue-specific effects of waterborne estrogen on estrogen receptor subtypes and E2-mediated gene expression in the reproductive axis of goldfish. Comp Biochem Phys 156(1):92–101

    Article  Google Scholar 

  • Martyniuk CJ, Gallant NS, Marlatt VL, Wiens SC, Woodhouse AJ et al (2006a) Current perspectives on 17β-estradiol (e2) action and nuclear estrogen receptors in teleost fish. In: Reinecke M, Zaccone G, Kapoor BGE (eds) Fish endocrinology, vol 2. Science Publishers, Enfield, pp 625–663

    Chapter  Google Scholar 

  • Martyniuk CJ, Xiong H, Crump K, Chiu S, Sardana R et al (2006b) Gene expression profiling in the neuroendocrine brain of male goldfish (Carassius auratus) exposed to 17α-ethinylestradiol. Physiol Genomics 27(3):328–336

    Article  PubMed  CAS  Google Scholar 

  • McMaster ME, Munkittrick KR, Van Der Kraak GJ (1992) Protocol for measuring circulating levels of gonadal sex steroids in fish. Can Tech Rep Fish Aquat Sci 1–19

  • Menuet A, Pellegrini E, Anglade I, Blaise O, Laudet V et al (2002) Molecular characterization of three estrogen receptor forms in zebrafish: binding characteristics, transactivation properties, and tissue distributions. Biol Reprod 66(6):1881–1892

    Article  PubMed  CAS  Google Scholar 

  • Menuet A, Le Page Y, Torres O, Kern L, Kah O et al (2004) Analysis of the estrogen regulation of the zebrafish estrogen receptor (er) reveals distinct effects of erα, erβ1 and erβ2. J Mol Endocrinol 32(3):975–986

    Article  PubMed  CAS  Google Scholar 

  • Meucci V, Arukwe A (2006) Transcriptional modulation of brain and hepatic estrogen receptor and p450arom isotypes in juvenile atlantic salmon (Salmo salar) after waterborne exposure to the xenoestrogen, 4-nonylphenol. Aquat Toxicol 77(2):167–177

    Article  PubMed  CAS  Google Scholar 

  • Nelson ER, Habibi HR (2006) Molecular characterization and sex-related seasonal expression of thyroid receptor subtypes in goldfish. Mol Cell Endocrinol 253(1–2):83–95

    Article  PubMed  CAS  Google Scholar 

  • Nelson ER, Habibi HR (2008) Functional significance of a truncated thyroid receptor subtype lacking a hormone-binding domain in goldfish. Endocrinology

  • Nelson ER, Wiehler WB, Cole WC, Habibi HR (2007) Homologous regulation of estrogen receptor subtypes in goldfish (Carassius auratus). Mol Reprod Dev 74(9):1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J et al (2001) Mechanisms of estrogen action. Physiol Rev 81(4):1535–1565

    PubMed  CAS  Google Scholar 

  • Pasmanik M, Callard GV (1988) Changes in brain aromatase and 5-alpha-reductase activities correlate significantly with seasonal reproductive-cycles in goldfish (Carassius auratus). Endocrinology 122(4):1349–1356

    Article  PubMed  CAS  Google Scholar 

  • Ryffel GU (1978) Synthesis of vitellogenin, an attractive model for investigating hormone-induced gene activation. Mol Cell Endocrinol 12:213–221

    Article  Google Scholar 

  • Sabo-Attwood T, Kroll KJ, Denslow ND (2004) Differential expression of largemouth bass (micropterus salmoides) estrogen receptor isotypes alpha, beta, and gamma by estradiol. Mol Cell Endocrinol 218(1–2):107–118

    Article  PubMed  CAS  Google Scholar 

  • Simpson ER, Mahendroo MS, Means GD, Kilgore MW, Hinshelwood MM et al (1994) Aromatase cytochrome p450, the enzyme responsible for estrogen biosynthesis. Endocr Rev 15(3):342–355

    PubMed  CAS  Google Scholar 

  • Sohn YC, Yoshiura Y, Kobayashi M, Aida K (1999) Seasonal changes in mRNA levels of gonadotropin and thyrotropin subunits in the goldfish, Carassius auratus. Gen Comp Endocrinol 113(3):436–444

    Article  PubMed  CAS  Google Scholar 

  • Tchoudakova A, Pathak S, Callard GV (1999) Molecular cloning of an estrogen receptor beta subtype from the goldfish, Carassius auratus. Gen Comp Endocrinol 113(3):388–400

    Article  PubMed  CAS  Google Scholar 

  • Trudeau VL (1997) Neuroendocrine regulation of gonadotrophin II release and gonadal growth in the goldfish, Carassius auratus. Rev Reprod 2(1):55–68

    Article  PubMed  CAS  Google Scholar 

  • Tsai MJ, O’Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan N, Davidkova G, Zhu YS, Koibuchi N, Chin WW et al (2001) Differential interaction of estrogen receptor and thyroid hormone receptor isoforms on the rat oxytocin receptor promoter leads to differences in transcriptional regulation. Neuroendocrinology 74(5):309–324

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan N, Ogawa S, Pfaff D (2002) Estrogen and thyroid hormone receptor interactions: physiological flexibility by molecular specificity. Physiol Rev 82(4):923–944

    PubMed  CAS  Google Scholar 

  • Wiens SC, Eales JG (2005) The effects of 17beta-estradiol injections on thyroid hormone deiodination pathways in liver and other tissues of female and male rainbow trout (oncorhynchus mykiss) at different stages of sexual maturity. Can J Zool 83:596–603

    Article  CAS  Google Scholar 

  • Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Annu Rev Physiol 62:439–466

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Lorenc H, Stephenson H, Wang YJ, Witherspoon D, Katzenellenbogen B, Pfaff D, Vasudevan N (2005) Thyroid hormone can increase estrogen-mediated transcription from a consensus estrogen response element in neuroblastoma cells. Proc Nat Acad Sci USA 102(13):4890–4895

    Article  PubMed  CAS  Google Scholar 

  • Zhu YS, Yen PM, Chin WW, Pfaff DW (1996) Estrogen and thyroid hormone interaction on regulation of gene expression. Proc Nat Acad Sci USA 93:12587–12592

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Bill Fletcher for the goldfish care. This research was supported by grants from NSERC Canada (V.L.T. and T.M.) and scholarships from OGSST (V.L.M.) and NSERC (F.J. and S.W.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. L. Marlatt or V. L. Trudeau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marlatt, V.L., Gerrie, E., Wiens, S. et al. Estradiol and triiodothyronine differentially modulate reproductive and thyroidal genes in male goldfish. Fish Physiol Biochem 38, 283–296 (2012). https://doi.org/10.1007/s10695-011-9506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-011-9506-z

Keywords

Navigation