Skip to main content
Log in

Cytoarchitectonic study of the brain of a dwarf snakehead, Channa gachua (Ham.). I. The telencephalon

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Cytoarchitectonic pattern of the telencephalon of a dwarf snakehead, Channa gachua, is studied by serial transverse sections of the brain (Kluver and Barrera staining). On the anteriormost extremity of the telencephalon, olfactory bulbs terminate that are sessile. The olfactory bulbs comprise four concentric layers, which from outside toward the center are olfactory nerve layer, a glomerular layer, mitral cell layer, and internal cell layer. Large terminal nerve ganglion cells are prominently visible in the dorsomedial position where the bulbs terminate on the telencephalon. In all, 24 nuclei are identified in the telencephalon on ventral and dorsal areas and are named according to their position. Ventral telencephalon exhibits 11 nuclei. On the dorsal telencephalon, there are 13 nuclei. These again are named according to their position on dorsal, ventral, median, lateral, or posterior part. This study reported for the first time in this fish will be useful in tracing the neuronal system of Channa gachua and subsequent studies of the functional aspects of these nuclei in the regulation of reproductive cycle of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baile VV, Raut IN, Bhute YV (2008) Organization of olfactory system, forebrain and pituitary gland of a teleosts, Notopterus notopterus. Annals Neurosci 15:43–50

    Article  Google Scholar 

  • Bass AH (1981) Telencephalic efferents in the channel catfish, Ictalurus punctatus: projections to the olfactory bulb and optic tectum. Brain Behav Evol 19:1–16

    Article  PubMed  CAS  Google Scholar 

  • Baylé JD, Ramade F, Oliver J (1974) Stereotaxic topography of the brain of the quail. J Physiol (Paris) 68:219–241

    Google Scholar 

  • Bhute YV, Masram SC, Raut IN, Baile VV (2007) Cytoarchitectonic pattern of the olfactory system, forebrain and pitutitary gland of the Indian major carp, Labeo rohita. Annals Neurosci 14:30–36

    Article  Google Scholar 

  • Cerda-Reverter JM, Zanuy S, Munoz-Cueto JA (2001) Cytoarchitectonic study of the brain of a perciformis species, the sea bass (Dicentrarchus labrax). I. The telencephalon. J Morphol 247:217–228

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty NM (2006) Murrels and Murrel culture. Narendra pub. Viii, 112 p

  • Díez C, Lara J, Alonso JR, Miguel JJ, Aijon J (1987) Microscopic structure of the brain of Barbus meridionalis. I. Telencephalon. J Hirnforsch 3:255–269

    Google Scholar 

  • Finger TE (1975) The distribution of the olfactory tracts in the bullhead catfish. Ictalurus nebulosus. J Comp Neurol 161:125–141

    Article  PubMed  CAS  Google Scholar 

  • Kluver H, Barrera E (1953) A method for the combined staining of cells and fibers in the neurons system. J Neuropathalo Exp Neurol 12:400–403

    Article  CAS  Google Scholar 

  • Kuenzel WJ, Masson L (1988) A stereotaxic atlas of the brain of the chick (Gallus domesticus). Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Marino-Neto J, Sabbatini REM (1988) A stereotaxic atlas for the telencephalon of the Siamese fighting fish (Betta splendens). Braz J Med Biol Res 21:97–986

    Google Scholar 

  • Mikami S (1976) Ultrastructure of the organum vasculosum of laminea terminalia of the Japanese quail, Coturnix coturnix japonica. Cell Tissue Res 172:227–243

    Article  PubMed  CAS  Google Scholar 

  • Munõz-Cueto JA, Sarasquete C, Zohar Y, Kah O (2001) An atlas of the brain of the gilthead seabream, Sparus aurata. Sea Grant University of Maryland, Baltimore

    Google Scholar 

  • Murakami T, Morita Y, Ito H (1983) Extrinsic and intrinsic fiber connections of the telencephalon in a teleost Sebasticus marmoratus. J Comp Neurol 216:115–131

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R (1963) The comparative anatomy of the actinopterygian forebrain. J Hirnforsch 6:171–196

    Google Scholar 

  • Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG, Braford MR Jr (1980) New observation on the organization and evolution of the telencephalon of actinopterygian fishes. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 41–98

    Chapter  Google Scholar 

  • Northcutt RG, Davis RE (1983) Telencephalic organization in ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology, vol 2. University of Michigan Press, Ann Arbor, pp 203–236

    Google Scholar 

  • Peter RE, Gill VE (1975) A stereotaxic atlas for forebrain nuclei of the goldfish, Carassius auratus. J Comp Neurol 159:69–102

    Article  PubMed  CAS  Google Scholar 

  • Peter RE, Macey MJ, Gill VE (1975) A stereotaxic atlas for forebrain nuclei of the killifish, Fundulus heteroclitus. J Comp Neurol 159:103–128

    Article  PubMed  CAS  Google Scholar 

  • Prasada Rao PD, Finger TE (1984) Asymmetry of the olfactory system in the brain of the winter flounder, Pseudopleuronectes americanus. J Comp Neurol 255:492–510

    Google Scholar 

  • Prasada Rao PD, Subhedar N, Raju PD (1981) Cytoarchitectonic pattern of the hypothalamus in the cobra, Naja naja. Cell Tissue Res 217:503–529

    Article  Google Scholar 

  • Riedel G (1997) The forebrain of the blind cave fish Astyanax hubbsi (Characidae). I. General anatomy of telencephalon. Brain Behav Evol 49:20–38

    Article  PubMed  CAS  Google Scholar 

  • Sakharkar AJ, Singru PS, Sarkar K, Subhedar NK (2005) Neuropeptide Y in the forebrain of the adult male cichlid fish, Oreochromis mossambicus: distribution, effects of castration and testosterone replacement. J Comp Neurol 489:148–165

    Google Scholar 

  • Singh HR (1969) On the structure and relation of the habenula in some teleost. Zool Beitrage 15:457–464

    Google Scholar 

  • Subhedar NK, Ramakrishna NS, Prasada Rao PD (1989) Cytoarchitectonic pattern in the hypothalamus of the crocodile, Gavialis gangeticus. Cell Tissue Res 255:89–105

    Article  Google Scholar 

  • Tsuneki K (1986) A survey of occurrence of about seventeen circumventricular organs in brains of various vertebrates with special reference to lower groups. J Hirnforsch 27:441–470

    PubMed  CAS  Google Scholar 

  • Wenger T, Tork I (1968) Studies on the organum vasculosum laminae terminalis. II. Comparative morphology of the organum vasculosum laminae terminalis of fishes, amphibian, reptiles, birds and mammals. Acta Biol Acad Sci Hung 19:83–96

    PubMed  CAS  Google Scholar 

  • Wullimann MF, Rupp B, Reichert H (1996) Neuroanatomy of Zebrafish brain: a topological atlas. Birkhaüser Verlag, Basel

    Google Scholar 

  • Yamane Y, Yoshimoto M, Ito H (1996) Area dorsalis pars lateralis of the telencephalon in a teleost (Sebastiscus marmoratus) can be divided into dorsal and ventral regions. Brain Behav Evol 48:338–349

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grants from University Grants Commission, under Major Research Project (F. No. 36-201/2008(SR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidya V. Baile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baile, V.V., Patle, P.J. Cytoarchitectonic study of the brain of a dwarf snakehead, Channa gachua (Ham.). I. The telencephalon. Fish Physiol Biochem 37, 993–1004 (2011). https://doi.org/10.1007/s10695-011-9503-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-011-9503-2

Keywords

Navigation