Skip to main content
Log in

cDNA cloning, pituitary location, and extra-pituitary expression of pro-opiomelanocortin gene in rare minnow (Gobiocypris rarus)

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

A cDNA encoding pro-opiomelanocortin (POMC) gene was cloned from the pituitary gland of the rare minnow (Gobiocypris rarus), a small freshwater fish endemic to China. This was achieved by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Data showed that the predicted rare minnow POMC (rmPOMC) cDNA consisted of 846bps coding for the following sequences, flanked by proteolytic cleavage sites: signal peptide (SP, Met1–Ala28), N-terminal peptide (Gln29–His105), ACTH (Ser108–Met146), α-MSH (Ser108–Gal121), CLIP (Pro126–Met146), β-LPH (Glu149–His221), γ-LPH (Glu149–Ser186), β-MSH (Asp170–Ser186), and β-endorphin (β-EP, Tyr189–Gln221). Sequence analysis showed no region was homologous to γ-MSH (a tetrapod POMC feature). The amino acid sequence is highly similar to POMC-I and POMC-II of the common carp (92.4%), according to homologous alignment. It was POMCα through the phylogenetic analysis. Pituitary and extra-pituitary expression were studied using RT-PCR and in situ hybridization. The rmPOMC-positive cells were mainly located in the rostral pars distalis (RPD) and pars intermedia (PI). Some rmPOMC-positive cells were detected in the proximal pars distalis (PPD) as well, according to in situ hybridization. In the extra-pituitary tissues, positive signals were observed in the brain, intestines, gonads, hepatopancreas, spleen, and gills by RT-PCR analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amemiya Y, Takahashi A, Dores RM et al (1997) Sturgeon proopiomelanocortin has a remnant of gamma-melanotropin. Biochem Biophys Res Commun 230(2):452–456

    Article  PubMed  CAS  Google Scholar 

  • Amemiya Y, Takahashi A, Suzuki N et al (2000) Molecular cloning of proopiomelanocortin cDNA from an elasmobranch, the stingray, Dasyatis akajei. Gen Comp Endocrinol 118(1):105–112

    Article  PubMed  CAS  Google Scholar 

  • Arends RJ, Vermeer H, Martens GJ et al (1998) Cloning and expression of two proopiomelanocortin mRNAs in the common carp (Cyprinus carpio L.). Mol Cell Endocrinol 143(1–2):23–31

    Article  PubMed  CAS  Google Scholar 

  • Benjannet S, Rondeau N, Day R et al (1991) PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc Natl Acad Sci USA 88(9):3564–3568

    Article  PubMed  CAS  Google Scholar 

  • Bicknell AB (2008) The tissue-specific processing of pro-opiomelanocortin. J Neuroendocrinol 20(6):692–699

    Article  PubMed  CAS  Google Scholar 

  • Borella MI, Venturieri R, Mancera JM (2009) Immunocytochemical identification of adenohypophyseal cells in the pirarucu (Arapaima gigas), an Amazonian basal teleost. Fish Physiol Biochem 35(1):3–16

    Article  PubMed  CAS  Google Scholar 

  • Cerdá-Reverter JM, Schiöth HB, Peter RE (2003) The central melanocortin system regulates food intake in goldfish. Regul Pept 115(2):101–113

    Article  PubMed  Google Scholar 

  • Chang AC, Cochet M, Cohen SN (1980) Structural organization of human genomic DNA encoding the pro-opiomelanocortin peptide. Proc Natl Acad Sci USA 7(8):4890–4894

    Article  Google Scholar 

  • Chen XW, Ying WZ, Valentin JP et al (1997) Mechanism of the natriuretic action of gamma-melanocyte stimulating hormone. Am J Physiol 272(6 pt 2):1946–1953

    Google Scholar 

  • Cool DR, Fenger M, Snell CR et al (1995) Identification of the sorting signal motif within pro-opiomelanocortin for the regulated secretory pathway. J Bio Chem 270:8723–8729

    Article  CAS  Google Scholar 

  • Crine P, Gianoulakis C, Seidah NG et al (1978) Biosynthesis of beta-endorphin from beta-lipotropin and a larger molecular weight precursor in rat pars intermedia. Proc Natl Acad Sci USA 75(10):4719–4723

    Article  PubMed  CAS  Google Scholar 

  • Danielson PB, Alrubaian J, Muller M et al (1999) Duplication of the POMC gene in the paddlefish (Polyodon spathula): analysis of g-MSH, ACTH, and β-endorphin regions of ray-finned fish POMC. Gen Comp Endocrinol 116(2):164–177

    Article  PubMed  CAS  Google Scholar 

  • de Souza FS, Bumaschny VF, Low MJ et al (2005) Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishes. Mol Biol Evol 22(12):2417–2427

    Article  PubMed  Google Scholar 

  • Dores RM, Smith TR, Rubin DA et al (1997) Deciphering posttranslational processing events in the pituitary of a neopterygian fish: cloning of a gar proopiomelanocortin cDNA. Gen Comp Endocrinol 107(3):401–413

    Article  PubMed  CAS  Google Scholar 

  • Dores RM, Sollars C, Danielson P et al (1999) Cloning of a proopiomelanocortin cDNA from the pituitary of the Australian Lungfish, Neoceratodus forsteri: analyzing trends in the organization of this prohormone precursor. Gen Comp Endocrinol 116(3):433–444

    Article  PubMed  CAS  Google Scholar 

  • Duvaux-Miret O, Dissous C, Gautron JP et al (1990) The helminth Schistosoma mansoni expresses a peptide similar to human betaendorphin and possesses a proopiomelanocortin-related gene. New Biol 2(1):93–99

    PubMed  CAS  Google Scholar 

  • Endo D, Park MK (2004) Molecular characterization of the leopard gecko POMC geneand expressional change in the testis by acclimation to low temperature and with a short photoperiod. Gen Comp Endocrinol 138(1):70–77

    Article  PubMed  CAS  Google Scholar 

  • Furkert J, Klug U, Slominski A et al (1997) Identification and measurement of beta-endorphin levels in the skin during induced hair growth in mice. Biochem Biophys Acta 1336:315–322

    PubMed  CAS  Google Scholar 

  • García-García L, Fuentes JA, Manzanares J (1997) Differential 5-HT-mediated regulation of stress-induced activation of proopiomelanocortin (POMC) gene expression in the anterior and intermediate lobe of the pituitary in male rats. Brain Res 772(1–2):115–120

    Article  PubMed  Google Scholar 

  • Gonzalez-Nunez V, Gonzalez-Sarmiento R, Rodríguez RE (2003) Identification of two proopiomelanocortin genes in zebrafish (Danio rerio). Brain Res Mol Brain Res 120(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Guelin M, Kejzlarovà-Lepesant J, Lepesant JA (1985) In situ hybridization: a routine method for parallel localization of DNA sequences and of their transcripts in consecutive paraffin sections with the use of 3H-labelled nick translated cloned DNA probes. Biol Cell 53(1):1–12

    PubMed  CAS  Google Scholar 

  • Hadley ME, Haskell-Luevano C (1999) The proopiomelanocortin system. Ann N Y Acad Sci Oct 20(885):1–21

    Google Scholar 

  • Hansen IA, To TT, Wortmann S et al (2003) The pro-opiomelanocortin gene of the zebrafish (Danio rerio). Biochem Biophys Res Commun 303(4):1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Harbour DV, Smith EM, Blalock JE (1987) Novel processing pathway for proopiomelanocortin in lymphocytes: endotoxin induction of a new prohormone-cleaving enzyme. J Neurosci Res 18(1):95–101

    Article  PubMed  CAS  Google Scholar 

  • Harris J, Bird DJ (2000) Modulation of the fish immune system by hormones. Vet Immunol Immunopathol 77(3–4):163–176

    Article  PubMed  CAS  Google Scholar 

  • He S, Chen Y, Nakajima T (2000) Cytochrome b sequencing and phylogeny of Eastern Asian Cyprinidae Fishes. Chin Sci Bull 45(21):2297–2302

    Google Scholar 

  • He S, Liu H, Chen Y et al (2004) Molecular phylogenetic relationships of Eastern Asian Cyprinidae (pisces: cypriniformes) inferred from cytochrome b sequences. Sci China C Life Sci 47(2):130–138

    Article  PubMed  CAS  Google Scholar 

  • Hedges SB, Kumar S (2009) The timetree of life. Oxford, New York, pp 317–350

    Google Scholar 

  • Hoegg S, Brinkmann H, Taylor JS et al (2004) Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190–203

    Article  PubMed  CAS  Google Scholar 

  • Hook V, Funkelstein L, Lu D et al (2008) Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 48:393–423

    Article  PubMed  CAS  Google Scholar 

  • Hook V, Funkelstein L, Toneff T et al (2009) Human pituitary contains dual cathepsin L and prohormone convertase processing pathway components involved in converting POMC into the peptie hormones ACTH, -MSH, and–endorphin. Endorcine 35(3):429–437

    Article  CAS  Google Scholar 

  • Karsi A, Waldbieser GC, Small BC (2004) Molecular cloning of proopiomelanocortin cDNA and multi-tissue mRNA expression in channel catfish. Gen Comp Endocrinol 137(3):312–321

    Article  PubMed  CAS  Google Scholar 

  • Kasper RS, Shved N, Takahashi A et al (2006) A systematic immunohistochemical survey of the distributionpatterns of GH, prolactin, somatolactin, β-TSH, β-FSH, β-LH, ACTH, and α-MSH in the adenohypophysis of Oreochromis niloticus, the Nile tilapia. Cell Tissue Res 325(2):303–313

    Article  PubMed  CAS  Google Scholar 

  • Kawauchi H, Sower SA (2006) The dawn and evolution of hormones in the adenohypophysis. Gen Comp Endocrinol 148(1):3–14

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Sakamoto T, Iguchi K et al (2007) cDNA cloning of proopiomelanocortin (POMC) and mass spectrometric identification of POMC-derived peptides from snake and alligator pituitaries. Gen Comp Endocrinol 152(1):73–81

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lecaude S, Danielson P et al (1999) Cloning of proopiomelanocortin from the brain of the african lungfish, Protopterus annectens, and the brain of the western spadefoot toad, Spea multiplicatus. Neuroendocrinology 10(1):43–54

    Article  Google Scholar 

  • Lee M, Kim A, Conwell IM et al (2008) Effects of selective modulation of the central melanocortin-3-receptor on food intake and hypothalamic POMC expression. Peptides 29(3):440–447

    Article  PubMed  CAS  Google Scholar 

  • Loh YP, Maldonado A, Zhang C et al (2002) Mechanism of sorting proopiomelanocortin and proenkephlin to the regulated secretory pathway of neuroendocrine cells. Ann N Y Acad Sci 971:416–425

    Article  PubMed  CAS  Google Scholar 

  • Martens GJ, Civelli O, Herbert E (1985) Nucleotide sequence of cloned cDNA for pro-opiomelanocortin in the amphibian Xenopus laevis. J Biol Chem 260(25):13685–13689

    PubMed  CAS  Google Scholar 

  • Nakanishi S, Inoue A, Kita T et al (1979) Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature 278(5703):423–427

    Article  PubMed  CAS  Google Scholar 

  • Naudé R, Oelofsen W, Takahashi A et al (2006) Molecular cloning and characterization of preproopiomelanocortin (prePOMC) cDNA from the ostrich (Struthio camelus). Gen Comp Endocrinol 146(3):310–317

    Article  PubMed  Google Scholar 

  • Nozaki M, Ominato K, Takahashi A et al (2001) Adenohypophysial cell types in the lamprey pituitary:current state of the art. Comp Biochem Physiol B Biochem Mol Biol 129:303–309

    Article  PubMed  CAS  Google Scholar 

  • O’Donohue TL, Dorsa DM (1982) The opiomelanotropinergic neuronal and endocrine system. Peptides.(N.Y.) 3(3):353–395

    Article  Google Scholar 

  • Palermo F, Nabissi M, Cardinaletti G et al (2008) Cloning of sole proopiomelanocortin (POMC) cDNA and the effects of stocking density on POMC mRNA and growth rate in sole, Solea solea. Gen Comp Endocrinol 155(1):227–233

    Article  PubMed  CAS  Google Scholar 

  • Salbert G, Chauveau I, Bonnec G et al (1992) One of the two trout proopiomelanocortin messenger RNAs potentially encodes new peptides. Mol Endocrinol 6(10):1605–1613

    Article  PubMed  CAS  Google Scholar 

  • Salzet M, Salzet-Raveillon B, Cocquerelle C et al (1997) Leech immunocytes contain proopiomelanocortin: nitric oxide mediates hemolymph proopiomelanocortin processing. J Immunol 159(11):5400–5411

    PubMed  CAS  Google Scholar 

  • Sánchez-Franco F, Cacicedo L (1986) Inhibitory effect of β-endorphin on gonadotropin-releasing hormone and thyrotropin-releasing hormone releasing activity in cultured rat anterior pituitary cells. Horm Res 24(1):55–61

    Article  PubMed  Google Scholar 

  • Shen ST, Lu LM, Chen JR et al (2003) Molecular cloning of proopiomelanocortin (POMC) cDNA from mud turtle, Pelodiscus sinensis. Gen Comp Endocrinol 131(2):192–201

    Article  PubMed  CAS  Google Scholar 

  • Shoureshi P, Baron A, Szynskie L et al (2007) Analyzing the evolution of beta-endorphin post-translational processing events: Studies on reptiles. Gen Comp Endocrinol 153(1–3):148–154

    Article  PubMed  CAS  Google Scholar 

  • Solomon S (1999) POMC–derived peptides and their biological action. Ann N Y Acad Sci 885:22–40

    Article  PubMed  CAS  Google Scholar 

  • Soma GI, Kitahara N, Nishizawa T et al (1984) Nucleotide sequence of a cloned cDNA for proopiomelanocortin precursor of chum salmon Onchorynchus keta. Nucleic Acids Res 12(21):8029–8041

    Article  PubMed  CAS  Google Scholar 

  • Stefano GB, Salzet-Raveillon B, Salzet M (1999) Mytilus edulis hemolymph contains pro-opiomelanocortin: LPS and morphine stimulate differential processing. Brain Res Mol Brain Res 63(2):340–350

    Article  PubMed  CAS  Google Scholar 

  • Takahashi A, Amemiya Y, Sarashi M et al (1995) Melanotropin and corticotropin are encoded on two distinct genes in the lamprey, the earliest evolved extant vertebrate. Biochem Biophys Res Commun 213(2):490–498

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi S, Teshigawara K, Takahashi S (1999) Molecular cloning and characterization of the chicken pro-opiomelanocortin (POMC) gene. Biochim Biophys Acta 1450(3):452–459

    Article  PubMed  CAS  Google Scholar 

  • Varsamos S, Wendelaar Bonga SE, Filk G et al (2003) Cloning of a proopiomelanocortin cDNA from the pituitary gland of the sea bass (Dicentrarchus labrax) and assessment of mRNA expression in different tissues by means of real-time PCR. J Endocrinol 176:405–414

    Article  PubMed  CAS  Google Scholar 

  • Weltzien FA, Norberg B, Helvik JV et al (2003) Identification and localization of eight distinct hormone-producing cell types in the pituitary of male Atlantic halibut (Hippoglossus hippoglossus L.). Comp Biochem Physiol A Mol Integr Physiol 134(2):315–327

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank associate professor Xuefu He, and Taiming Yan and Miaorong Ye (Sichuan Agricultural University) for helping us to obtain the fish from the wild. This work was supported by The Research Fund for the Doctoral Program of Higher Education (20070635001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Xie, B., Zhang, Y. et al. cDNA cloning, pituitary location, and extra-pituitary expression of pro-opiomelanocortin gene in rare minnow (Gobiocypris rarus). Fish Physiol Biochem 37, 233–247 (2011). https://doi.org/10.1007/s10695-010-9433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-010-9433-4

Keywords

Navigation