Skip to main content
Log in

Gonadal histology and some biochemical characteristics of Chalcalburnus tarichi (Pallas, 1811) having abnormal gonads

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The gonad histology, gonado-somatic index (GSI), 17β-estradiol (E2) levels and acetylcholinesterase (AChE) activity in the carp species Chalcalburnus tarichi from Lake Van and the Karasu river, eastern Turkey, have been investigated. Fish between 5 and 7 years old were sampled from November 2003 to February 2004. The ratio of female fish caught in Lake Van with abnormal ovaries (AbOF) was 43.3%, but the fork length and body weight of these fish were not correlated with this abnormality. The weight of the ovaries and the GSI values of AbOF were very low (P < 0.05). Histological observations on the samples caught each month revealed that the oocytes had degenerated in the perinucleolus and early cortical alveolus stages and that the ovaries were full of somatic stromal tissue. In addition, the seminiferous tubules of male fish with abnormal testes did not contain male reproductive cells at any stage. The ovaries of the fish caught from the Karasu river were also full of oocytes in the perinucleolus and early cortical alveolus stages, but there were fewer atretic follicles. Furthermore, apoptosis was observed in the ovary cells of these fish, in particular in the follicular cells, and the plasma E2 levels of the AbOF was very low (P < 0.05). AChE activity was inhibited only in liver (P < 0.05). We conclude that our sample of C. tarichi must have been exposed to various polluting chemicals or another unknown factors (such as global warming) and that these factors have irreversibly impaired oocyte development in a high percentage of fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aliriz S, Türkoğlu V (2003) Purification and characterization of acetylcholinesterase from the lake van fish (Chalcalburnus tarichii Pallas, 1811). Prep Biochem Biotechnol 33:137–145

    Article  PubMed  CAS  Google Scholar 

  • Bennetau-Pelissero C, Breton BB, Bennetau B, Corraze G, Le Menn F, Davail-Cuisset B, Heleu C, Kaushik SJ (2001) Effect of genistein-enriched diet on the endocrine process of gametogenesis and on reproduction efficiency of the rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol 121:173–187

    Article  PubMed  CAS  Google Scholar 

  • Bhavan PS, Geraldine P (2001) Biochemical stress responses in tissues of the prawn Macrobrachium malcolmsonii on exposure to endosulfan. Pestic Biochem Physiol 70:27–41

    Article  CAS  Google Scholar 

  • Bjerregaard LB, Madsen AH, Korsgaard B, Bjerrgaard P (2006) Gonad histology and vitellogenin concentrations in brown trout (Salmo trutta) from Danish streams impacted by sewage effluent. Exotoxicology 15:315–327

    Article  CAS  Google Scholar 

  • Blazer VS (2002) Histopathological assessment of gonadal tissue in wild fishes. Fish Physiol Biochem 26:85–101

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bretaud S, Toutant J, And Saglio P (2000) Effects of carbofuran, diuron, and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus). Ecotoxicol Environ Safe 47:117–124

    Article  CAS  Google Scholar 

  • Chuiko GM, Podgornaya VA, Zhelnin YY (2003) Acetylcholinesterase and butyrylcholinesterase activities in brain and plasma of freshwater teleosts: cross-species and cross-family differences. Comp Biochem Physiol B Biochem Mol Biol 135:55–61

    PubMed  CAS  Google Scholar 

  • Corsi I, Mariottini M, Sensini C, Lancini L, Focardi S (2003a). Fish as bioindicators of brackish ecosystem health: integrating biomarker responses and target pollutant concentrations. Ocenolog Acta 26:129–138

    Article  CAS  Google Scholar 

  • Corsi I, Mariottini M, Sensini C, Lancini L, Focardi S (2003b). Cytochrome P450, acetylcholinesterase and gonadal histology for evaluating contaminant exposure levels in fishes from a highly eutrophic brackish ecosystem: the Orbetello Lagoon, Italy. Mar Pollut Bull 46:203–212

    Article  CAS  Google Scholar 

  • de la Torre FR, Ferrari L, Salibián A (2002) Freshwater pollution biomarker: response of brain acetylcholineesterase activity in two fish species. Comp Biochem Physiol C 131:271–280

    Article  Google Scholar 

  • De Mel GWJLMVTM, Pathiratne A (2005) Toxicity assessment of insecticides commonly used in rice pest management to the fry of common carp, Cyprinus carpio, a food fish culturable in rice fields. J Appl Ichthyol 21:146–150

    Article  Google Scholar 

  • De Metrio G, Corrieroa A, Desamtisa S, Zubania D, Cirilloa F, Deflorioa M, Bridgesb CR, Eickreb J, de la Sernac JM, Megalofonoud P, Kime DE (2003) Evidence of a high percentage of intersex in the Mediterranean swordfish (Xiphias gladius L.). Mar Pollut Bull 46:358–361

    Article  PubMed  CAS  Google Scholar 

  • Dembélé K, Haubruge E, Gaspar C (2000) Concentration effects of selected insecticides on brain acetylcholinesterase in the common carp (Cyprinus carpio L). Toxicol Environ Safe 45:49–54

    Article  Google Scholar 

  • Donaldson EM, Fagerlund UHM, Higgs DA, McBride JR (1979) Hormonal enhancement of growth. In: Hoar WS, Randall DJ (eds) Fish physiology, VIII. Academic Press, New York, pp 455–579

    Google Scholar 

  • Elman GL, Courtney KD, Andres V Jr (1961) Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  Google Scholar 

  • Elp M, Çetinkaya O (2000) İnci Kefali (Chalcalburnus tarichi Pallas, 1811)’nin üreme biyolojisi üzerine bir araştırma. IV. Doğu Anadolu Su Ürünleri Sempozyumu Kitapçığı, 51–66

  • Fernández-Vega C, Sancho E, Ferrando MD, Andreu E (2002) Thiobencarb-induced changes in acethylcholinesterase activity of the fish Anguilla anguilla. Pestic Biochem Physiol 72:55–63

    Article  CAS  Google Scholar 

  • Fulton MH, Key PB (2001) Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 20:37–45

    Article  PubMed  CAS  Google Scholar 

  • Hemmer MJ, Bowman CJ, Hemmer BL, Friedman SD, Marcovich D, Kroll KJ, Denslow ND (2002) Vitellogenin mRNA regulation and plasma clearance in male sheepshead minnows, (Cyprinodon variegatus) after cessation of exposure to 17β-estradiol and p-nonylphenol. Aquat Toxicol 58:99–112

    Article  PubMed  CAS  Google Scholar 

  • Kime DE (1999) A strategy for assessing the effects of xenobiotics on fish reproduction. Sci Total Environ 225:3–11

    Article  PubMed  CAS  Google Scholar 

  • Kiparissis Y, Balch GC, Metcalfe TL, Metcalfe CD (2003) Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka (Oryzias latipes). Environ Health Persp 111:1158–1163

    Article  CAS  Google Scholar 

  • Lionetto MG, Caricato R, Giordano ME, Pascariello MF, Morinosci L, Schettino T (2003) Integrated use of biomarkers (acetylcholinesterase and antioxidant enzymes activities) in Mytilus galloprovincialis and Mullus barbatus in an Italian coastal marine area. Mar Pollut Bull 46:324–330

    Article  PubMed  CAS  Google Scholar 

  • Nicolas JM (1999) Vitellogenesis in fish and the effects of polycyclic aromatic hydrocarbon contaminants. Aquat Toxicol 45:77–90

    Article  CAS  Google Scholar 

  • Nimrod AC, Benson WH (1998). Reproduction and development of Japanese medeka following an early life stage exposure to xenoestorgens. Aquat Toxicol 44:141–156

    Article  CAS  Google Scholar 

  • Palace WP, Evans RE, Wautier K, Baron C, Vandenbylllardt L, Vandersteen W, Kidd K (2002) Induction of vitellogenin and histological effects in wild fathead minnows from a lake experimentally treated with the synthetic estrogen, ethynylestradiol. Water Qual Res J Can 37:637–650

    CAS  Google Scholar 

  • Sancho E, Fernández-Vega C, Sanchez M, Ferrando MD, Andreu-Moliner E (2000) Alterations on AChE activity of the fish Anguilla anguilla as response to herbicide-contaminated water. Ecotoxicol Environ Safe 46:57–63

    Article  CAS  Google Scholar 

  • Savabieasfahani M, Lochmiller RL, Janz DM (1999) Elevated ovarian and thymic cell apoptosis in Wild cotton rats inhabiting petrochemical-contaminated terrestrial ecosystems. J Toxicol Environ Health A 57:521–527

    Article  PubMed  CAS  Google Scholar 

  • Sturm A, da Silva de Assis HC, Hansen P-D (1999) Cholineesterases of marine teleost fish: enzymological characterization and potential use in the monitoring of neurotoxic contamination. Mar Environ Res 47:389–398

    Article  CAS  Google Scholar 

  • Sundararaj BI, Nath P (1981) Synthesis of vitellogenin and its uptake by the ovary in the catfish, Heteropneustes fossilis (Bloch). Gen Comp Endocrinol 43:201–210

    Article  PubMed  CAS  Google Scholar 

  • Sundararaj BI, Nath P, Burzava-Gerard E (1982) Synthesis of vitellogenin and its uptake by the ovary in the catfish, Heteropneustes fossilis (Bloch) in response to carp gonadotropin and subunits. Gen Comp Endocrinol 46:93–98

    Article  PubMed  CAS  Google Scholar 

  • Tanaka JN, Grizzle JM (2002) Effects of nonylphenol on the gonadal differentiation of the hermaphroditic fish, Rivulus marmoratus. Aquat Toxicol 57:117–125

    Article  PubMed  CAS  Google Scholar 

  • Ünal G, Çetinkaya O, Elp M (1999) İnci kefalinde (Chalcalburnus tarichi, P., 1811) gonad gelişiminin histolojik olarak incelenmesi. Tr J Zool 23:329–338

    Google Scholar 

  • Ünal G, Karakişi H, Elp M (2005) Ovarian follicle ultrastructure and changes in levels of ovarian steroids during oogenesis in Chalcalburnus tarichi Pallas, 1811. Turk J Vet Anim Sci 29:645–653

    Google Scholar 

  • Versonnen BJ, Janssen CR (2004) Xenobiotic effects of ethinylestradiol in zebrafish (Danio rario) Inc. Environ Toxicol 19:198–206

    Article  PubMed  CAS  Google Scholar 

  • Wallace RA (1985) Vitellogenesis and oocyte growth in non-mammalian vertebrates. Dev Biol I:127–177

    Google Scholar 

  • Weber LP, Hill RL, Janz DM (2003) Developmental estrogenic exposure in zebrafish (Danio rerio); II. Histological evaluation of gametogenesis and organ toxicity. Aquat Toxicol 63:431–446

    Article  PubMed  CAS  Google Scholar 

  • Weber LP, Kiparissis Y, Hwang GS, Niimi AJ, Janz DM, Metcalfe CD (2002) Increased cellular apoptosis after chronic aqueous exposure to nonylphenol and quercetin in adult medaka (Oryzias latipes). Comp Biochem Physiol C 131:51–59

    Google Scholar 

  • Werner I, Clark SL, Hinton DE (2003) Biomarkers aid understanding of aquatic organism responses to environmental stressors. Calif Agric 57:110–115

    Article  Google Scholar 

  • Zaroogian G, Gardner G, Horowitz DB, Gutjahr-Gobell R, Haebler R, Mills L (2001) Effects of 17β-estradiol, o,p-DDT, octylphenol and p,p-DDE on gonadal development and liver and kidney pathology in juvenile male summer flounder (Paralichthys dentatus). Aquat Toxicol 54:101–112

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ünal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ünal, G., Türkoğlu, V., Oğuz, A.R. et al. Gonadal histology and some biochemical characteristics of Chalcalburnus tarichi (Pallas, 1811) having abnormal gonads. Fish Physiol Biochem 33, 153–165 (2007). https://doi.org/10.1007/s10695-006-9126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-006-9126-1

Keywords

Navigation