Skip to main content

Advertisement

Log in

Effect of Wind on Fire Whirl Over a Line Fire

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Fire whirls are often reported to occur in wildland and urban fires due to the effect of ambient wind. This paper presents an experimental study on the fire whirls over a line fire with cross wind, focusing on the occurrence frequency of fire whirls. The experimental observations indicated that the fire whirls induced by a line fire may spread beyond the line fire region with the effect of wind. For the effect of cross wind, it is indicated that the cross wind basically increases the occurrence frequency, while the velocity components parallel or perpendicular to the line fire have competitive effects. A scaling law is presented for the critical wind speed inducing fire whirls based on the experimental data in this work and literature. A method is proposed to estimate the magnitude of the fire whirl height under the critical wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Soma S, Saito K (1991) Reconstruction of fire whirls using scale models. Combust Flame 86(3):269–284. doi:10.1016/0010-2180(91)90107-M

    Article  Google Scholar 

  2. Shinohara M, Matsushima S (2012) Formation of fire whirls: Experimental verification that a counter-rotating vortex pair is a possible origin of fire whirls. Fire Safety J 54(0):144–153. doi:10.1016/j.firesaf.2012.03.009

    Article  Google Scholar 

  3. Zhou K, Liu N, Zhang L, Satoh K (2014) Thermal radiation from fire whirls: revised solid flame model. Fire Technol 50(6):1573–1587. doi:10.1007/s10694-013-0360-7

    Article  Google Scholar 

  4. Wang P, Liu N, Zhang L, Bai Y, Satoh K (2014) Fire whirl experimental facility with no enclosure of solid walls: design and validation. Fire Technol 1–19. doi:10.1007/s10694-014-0435-0

  5. Dessens J (1962) Man-made tornadoes. Nature 193(4810):14–15. doi:10.1038/193013a0

    Article  Google Scholar 

  6. Dupuy J-L, Maréchal J, Portier D, Valette J-C (2011) The effects of slope and fuel bed width on laboratory fire behaviour. Int J Wildland Fire 20(2):272–288. doi:10.1071/WF09075

    Article  Google Scholar 

  7. Silvani X, Morandini F, Dupuy J-L (2012) Effects of slope on fire spread observed through video images and multiple-point thermal measurements. Exp Therm Fluid Sci 41(0):99–111. doi:10.1016/j.expthermflusci.2012.03.021

    Article  Google Scholar 

  8. Emori R, Saito K (1982) Model experiment of hazardous forest fire whirl. Fire Technol 18(4):319–327. doi:10.1007/BF02473115

    Article  Google Scholar 

  9. Kuwana K, Sekimoto K, Saito K, Williams FA (2008) Scaling fire whirls. Fire Safety J 43(4):252–257. doi:10.1016/j.firesaf.2007.10.006

    Article  Google Scholar 

  10. Liu N, Liu Q, Deng Z, Kohyu S, Zhu J (2007) Burn-out time data analysis on interaction effects among multiple fires in fire arrays. Proc the Combust Inst 31(2):2589–2597. doi:10.1016/j.proci.2006.08.110

    Article  Google Scholar 

  11. Kuwana K, Sekimoto K, Akafuah NK, Chuah KH, Lei J, Saito K, Williams FA (2011) The moving-type fire whirl observed during a recent Brazil bush fire. Paper presented at the 7th US National Technical Meeting of the Combustion Institute, Georgia Institute of Technology, Atlanta, GA

  12. Kuwana K, Sekimoto K, Minami T, Tashiro T, Saito K (2013) Scale-model experiments of moving fire whirl over a line fire. Proc Combust Inst 34(2):2625–2631. doi:10.1016/j.proci.2012.06.092

    Article  Google Scholar 

  13. Zhou K, Liu N, Yin P, Yuan X, Jiang J (2014) Fire whirl due to interaction between line fire and cross wind. Paper presented at the Fire Safety Science—Proceedings of the Eleventh International Symposium, Canterbury, New Zealand

  14. Yuan LM, Cox G (1996) An experimental study of some line fires. Fire Safety J 27(2):123–139. doi:10.1016/S0379-7112(96)00047-1

    Article  Google Scholar 

  15. Zhou K, Liu N, Lozano JS, Shan Y, Yao B, Satoh K (2013) Effect of flow circulation on combustion dynamics of fire whirl. Proc Combust Inst 34(2):2617–2624. doi:10.1016/j.proci.2012.06.053

    Article  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China under Grant (51476156 and 51120165001), International Science & Technology Cooperation Program of China (No. 2014DFG72300), and the National Basic Research Program of China (973 Program, No. 2012CB719702). Naian Liu was supported by the Fundamental Research Funds for the Central Universities (No. WK 2320000020). Kuibin Zhou was supported by the Open Project of State Key Laboratory of Fire Science (No. HZ2013-KF09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Liu, N. & Yuan, X. Effect of Wind on Fire Whirl Over a Line Fire. Fire Technol 52, 865–875 (2016). https://doi.org/10.1007/s10694-015-0507-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-015-0507-9

Keywords

Navigation