Skip to main content
Log in

Conductive and Radiative Heat Transfer in Ceramic and Metal Foams at Fire Temperatures

Contribution to the Special Issue “Materials in Fire” Guest Editor K. Ghazi Wakili

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

In addition to the multiple actual or possible applications of metal and ceramic foams in various technological fields, their thermal properties make them a good candidate for utilization as fire barriers. Several studies have shown experimentally their exceptional fire retardance due to their low apparent thermal conductivity. However, while the thermal properties of this porous material have been widely studied at ambient temperature and are, at present, well-known, their thermal behaviour at fire temperatures remains relatively unexplored. Indeed, at such temperatures, the major difficulties are not only due to the fact that thermal measurements are rendered fussy since heavy equipments are required but also stem from the fact that a significant part of the heat transfer occurs by thermal radiation which is much more difficult to evaluate than conductive heat transfer. Therefore, the present chapter is written with a view to report progress on the knowledge of heat transfer in open cell foams and to enlighten the reader on the mechanisms of heat transfer at high temperatures. A first part is devoted to the review of the prior published works on the experimental or theoretical characterisations of radiative and conductive heat transfers from ambient to high temperatures. By taking inspiration from the concepts and models presented in these previous works, we propose, in a second part, a model of prediction of the conductive and radiative contributions to heat transfer at fire temperatures. This analytical model is based on numerical simulations applied to real foams and takes into account the structure of the foam and the optical and thermal properties of the constituents. In a third part, we propose an innovative experimental technique of characterization of heat transfer in foams at high temperatures which permit to evaluate independently the radiative and conductive contributions from a unique and simple measurement. The experimental results obtained on several metal and ceramic foams are compared to the results predicted by our numerical model. The good adequacy between experimental and theoretical results show the consistency of both approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Abbreviations

a :

Length of cell struts (m)

A :

Characteristic size of particles interacting with radiation (m)

d :

Thickness of cell struts (m)

D :

Characteristic size of cell lumps (m)

D cell :

Cell diameter (m)

E c , E h :

Emissivities of the hot and cold boundaries

f s :

Fraction of solid phase in struts (-)

f v  = 1 − ε:

Solid fraction (-)

k :

Thermal conductivity (W/m/K)

k c :

Effective thermal conductivity (W/m/K)

k equ :

Equivalent thermal conductivity (W/m/K)

k rad :

Radiative conductivity (W/m/K)

K R :

Rosseland extinction coefficient (m−1)

I λ :

Spectral radiative intensity (W/m2/Sr)

I 0 λ (T):

Spectral radiative intensity of the black body at temperature T (W/m2/Sr)

L :

Thickness of the foam slice (m)

L opt :

Optical thickness of the foam slice (-)

M :

Foam density (kg/m3)

P λ (μ′ → μ):

Scattering phase function (-)

\( \dot{Q} \) :

Heat flux density (W/m2)

q r , q c , q t :

Radiative, conductive and total heat flux densities (W/m2)

\( \vec{r} \) :

Position vector

sp :

Specularity parameter (-)

T :

Temperature (K)

T hot , T cold :

Temperatures of the hot and cold boundaries (K)

V 1, V 2 :

Volume of struts and lumps (m3)

x = πA/λ :

Size parameter (-)

z :

1D coordinate (m)

βσκ :

Extinction, scattering and absorption coefficients (m−1)

β*:

Weighted extinction coefficient (m−1)

\( \vec{\Updelta } \) :

Direction vector

ε:

Porosity (-)

μ:

Directing cosine of the radiant intensity (-)

θ:

Scattering angle (rad)

ρ:

Reflectivity (-)

λ:

Wavelength (m)

σ = 5.67 × 10−8 :

Stefan–Boltzmann constant (W/m2/K−4)

ω:

Scattering albedo (-)

fluid, solid:

Relative to the fluid/solid phases

DOM, ROSS:

Calculated by the DOM or the Rosseland Approximation

⊥, //:

Relative to perpendicular or parallel polarization

dif, spec:

Relative to diffuse or specular reflection

rad:

Radiative

References

  1. Evans, A.G., Hutchinson, J.W. and Ashby, M.F., “Cellular metals”, Current opinion in solid state & materials science 1998, vol. 3, no3, pp. 288-303

    Article  Google Scholar 

  2. Ashby, M.F., Evans, A.G., Hutchinson, J.W. and Fleck, N.A., Metal Foams: A Design Guide. Cambridge University, Engineering Department, Cambridge, 1998

    Google Scholar 

  3. Lu, T.J., Hess, A. and Ashby, M.F., “Sound absorption in metallic foams”, J. appl. Phys. 1999, vol. 85, no11, pp. 7528-7539

    Article  Google Scholar 

  4. Lu, T.J., Stone, H.A. and Ashby, M.F.,”Heat transfer in open-cell foams” Acta mater., 1998, 46, no 10, pp. 3619-3635

    Article  Google Scholar 

  5. S. GAUTHIER, A. NICOLLE, D. BAILLIS, “Investigation of the flame structure and nitrogen oxides formation in lean porous premixed combustion of natural gas/hydrogen blends International Journal of Hydrogen Energy, 33, 2008, pp. 4893-4905

    Article  Google Scholar 

  6. T.J., Lu and, C., Chen (1999) Thermal Transport and fire retardance properties of cellular aluminum alloys. Acta mater 47(5): 1469-1485

    Article  Google Scholar 

  7. Koch U, Thompson MS, Nardone VC (1994) In: Sanders TH Jr (ed) Proceedings of the 4th international conference on aluminium alloys, Atlanta, Georgia, pp 387–394

  8. Coquard R, Baillis D (2008) Radiative and conductive thermal properties of foams. In: Öchsner A, Murch GE, de Lemos M (eds) Thermal properties of cellular and porous materials, Weinheim, pp 343–384

  9. Solórzano E, Reglero JA, Rodríguez-Pérez MA, Lehmhus D, Wichmann M, de Saja JA (2008) An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method. Int J Heat Mass Transf 51:6259–6267

    Article  Google Scholar 

  10. Russell HW (1935) Principles of heat flow in porous insulators. J Am Ceram Soc 18:1–5

    Article  Google Scholar 

  11. Glicksmann L.R and Schuetz M.A.; In: N.C. Hilyard and A. Cunningham, editors, Low Density Cellular Plastics. Chapman et Hall, London 1994, pp. 104-152

    Chapter  Google Scholar 

  12. Collishaw P.G.,. Evans J.R.G, An assessment of expressions for the apparent thermal conductivity of cellular materials. J. Mater. Sci. 1994; 29: 486–498

    Article  Google Scholar 

  13. Bauer T.H., A general analytical approach toward the thermal conductivity of porous media. Internat. J. Heat Mass Transfer 1993; 36: 4181–4191

    Article  MATH  Google Scholar 

  14. Ahern A., Verbist G., Weaire D., Phelan R., and, Fleurent H., The conductivity of foams: a generalisation of the electrical to the thermal case. Colloids and Surfaces A: Physicochem. Eng. Aspects 2005; 263: 275–279

    Article  Google Scholar 

  15. Boomsma K., Poulikakos D., On the effective thermal conductivity of a three dimensionally structured fluid-saturated metal foam. Int J Heat Mass Transf 2001; 44: pp. 827–836

    Article  MATH  Google Scholar 

  16. Bhattacharya A., Calmidi V.V. and Mahajan R.L., Thermophysical properties of high porosity metal foams. Int J Heat Mass Transf 2002; 45: pp. 1017-1031

    Article  MATH  Google Scholar 

  17. Fu X., Viskanta R. and Gore J.P., Prediction of effective thermal conductivity of cellular ceramics. Int. Comm. Heat Mass Transfer 1998; 25: pp. 151-160

    Article  Google Scholar 

  18. Singh R. and Kasana H.S., Computational aspects of effective thermal conductivity of highly porous metal foams. Applied Thermal Engineering 2004; 24: pp. 1841–1849

    Article  Google Scholar 

  19. Wang J.F., Carson J.K., J. Willix J., North M.F., Cleland D.J., A symmetric and interconnected skeleton structural (SISS) model for predicting thermal and electrical conductivity and Young’s modulus of porous foams. Acta Materialia 2008; 56: pp. 5138–5146

    Article  Google Scholar 

  20. Druma A.M., Alam M.K. and Druma C., Analysis of thermal conduction in carbon foams. International Journal of Thermal Sciences 2004; 43: pp. 689–695

    Article  Google Scholar 

  21. Saadatfar M., Arns C.H., Knackstedt M.A. and Senden T., Mechanical and transport properties of polymeric foams derived from 3D image. Colloids and Surfaces A: Physicochem. Eng. Aspects 2004; 263: pp. 284–289

    Article  Google Scholar 

  22. Wang M., Pan N., Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int J Heat Mass Transf 2008; 51: pp. 1325–1331

    Article  MATH  Google Scholar 

  23. Coquard R, Baillis D (2009) Numerical investigation of conductive heat transfer in high-porosity foams. Acta Mater 57(18):5466–5479

    Article  Google Scholar 

  24. Glicksman L, Marge A, Moreno J (1992) Radiation heat-transfer in cellular foam insulation. In: Developments in radiative heat transfer, vol 203. ASME, pp 45–54

  25. Glicksman, L.R., M. Schuetz, and M. Sinofsky, “Radiation Heat Transfer in Foam Insulation,” Int. Jour. Heat Mass Transfer, 30, 1, 187-197, 1987

    Article  Google Scholar 

  26. C.Y. Zhao, T.J. Lu, H.P. Hodson “Thermal radiation in ultralight metal foams with open cells”, Int J Heat Mass Transf 47 (14-16) (2004) 2927–2939

    Article  Google Scholar 

  27. C.Y. Zhao, S.A. Tassou, T.J. Lu, “Analytical considerations of thermal radiation in cellular metal foams with open cells”, Int J Heat Mass Transf 51 (14-16) (2008) pp 929–940

    Article  MATH  Google Scholar 

  28. M. Loretz, R. Coquard, D. Baillis and E. Maire, “Metallic foams: Radiative properties/comparison between different models”, Journal of Quantitative Spectroscopy and Radiative Transfer, 109 (1) (2008) 16-27

    Article  Google Scholar 

  29. M. Loretz, E. Maire and D. Baillis, “Analytical Modeling of the Radiative Properties of Metallic Foams: Contribution of X-Ray Tomography”, ADVANCED ENGINEERING MATERIALS vol. 10, 2008, pp.352-360

    Article  Google Scholar 

  30. Zhao CY, Lua TJ, Hodson HP, Jackson JD (2004) The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Mater Sci Eng A 367(1–2):123–131

    Google Scholar 

  31. R. Coquard, D. Rochais, D. Baillis, “Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams”, Int J Heat Mass Transf, Volume 52, Issues 21-22, October 2009, Pages 4907-4918

    Article  MATH  Google Scholar 

  32. Takegoshi, E., Y. Hirasawa, J. Matsuo, and K. Okui, “A Study on Effective Thermal Conductivity of Porous Metals,” Trans. of the Japanese Soc. Of Mech. Eng., 58, 879 (1992)

    Article  Google Scholar 

  33. Calmidi, V. V., and R. L. Mahajan, “The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams,” J. of Heat Transf., 121, 466 (1999)

    Article  Google Scholar 

  34. Paek JW, Kang BH, Kim SY, Hyun JM (2000) Effective thermal conductivity and permeability of aluminum foam materials. Int J Thermophys 21(2):453–464

    Google Scholar 

  35. Schmierer E.N., Razani A. “Self-Consistent Open-Celled Metal Foam Model for Thermal Applications”, Journal of Heat Transfer, 2006, Vol. 128, pp. 1194-1203

    Article  Google Scholar 

  36. Mourad Fetoui, Fethi Albouchi, Fabrice Rigollet, and Sassi Ben Nasrallah, “Highly Porous Metal Foams: Effective Thermal Conductivity Measurement Using a Photothermal Technique”, Journal of Porous Media 12(10), 939–954 (2009)

    Article  Google Scholar 

  37. Doermann D. and Sacadura J.F., “Heat transfer in open-cell foams”, Journal of Heat Transfer, 1996, Vol. 118 pp. 88-93

    Article  Google Scholar 

  38. COQUARD R. and Baillis D. “Radiative properties of dense fibrous media in dependent scattering regime”, ASME Journal of Heat Transfer, 2006, vol. 128, n°10, pp. 1022-1030

    Article  Google Scholar 

  39. R. Coquard; D. Baillis, “Radiative Characteristics of Opaque Spherical Particles Beds: A New Method of Prediction”, Journal of Thermophysics and Heat Transfer, 2004, vol.18 n°.2 pp. 178-186

    Article  Google Scholar 

  40. Siegel R. and Howell J.R., “Thermal radiation heat Transfer”, 3rd ed., Hemisphere Publishing Corp., Washington DC, 1992

    Google Scholar 

  41. Brewster, M. Q., Thermal Radiative Transfer and Properties, Wiley, New York, 1992

    Google Scholar 

  42. Barea R, Osendi MI, Ferreira JMF, Miranzo P (2005) Thermal conductivity of highly porous Mullite material. Acta Mater 53(11):3313–3318

    Article  Google Scholar 

  43. David R. Clarke, “Materials selection guidelines for low thermal conductivity thermal barrier coatings”, Surface and Coatings Technology 163–164 (2003) 67–74

    Article  Google Scholar 

  44. Loretz M (2008) Caractérisation des Propriétés Thermiques de Mousses Céramiques et Métalliques à partir d’Analyses Tomographiques aux Rayons X. PhD thesis, Institut National des Sciences Appliquées (INSA) de Lyon, Villeurbanne, France, 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémi Coquard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coquard, R., Rochais, D. & Baillis, D. Conductive and Radiative Heat Transfer in Ceramic and Metal Foams at Fire Temperatures. Fire Technol 48, 699–732 (2012). https://doi.org/10.1007/s10694-010-0167-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-010-0167-8

Keywords

Navigation