Skip to main content
Log in

Physical Phenomena and Length Scales Governing the Behaviour of Wildfires: A Case for Physical Modelling

  • Invited Paper
  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

This paper is an overview of the physical mechanisms and length scales governing the propagation of wildfires. One of the objectives is to identify the physical and mathematical constraints in the modelling of wildfires when using a “fully” physical approach. The literature highlights two regimes in the propagation of surface fires, i.e. wind-driven fires and plume-dominated fires, which are governed by radiation and convective heat transfer, respectively. This division leads to the identification of two governing length scales: the extinction length characterising the absorption of radiation by vegetation, and the integral turbulent length scale characterising the interaction between wind and canopy. Some numerical results published during the last decade using a fully physical approach are presented and discussed with a focus on the models FIRESTAR, FIRELES, FIRETEC and WFDS. Numerical simulations were compared with experimental data obtained at various scales, from laboratory to field fires in grassland and in Mediterranean shrubland. Some perspectives are presented concerning the potential coupling between physical fire models with mesoscale atmospheric models to study the impacts of wildfires at larger scale. Some of the topics on wildfire physical modelling that need further research are identified in the conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF (2005) The wildland-urban interface in the United States. Ecol Appl 15(3): 799-805

    Article  Google Scholar 

  2. Mell WE, Manzello SL, Maranghides A, Butry D, Rehm RG (2010) The wildland-urban interface fire problem current approaches and research needs. Int J Wildland Fire (in press)

  3. Fons W.L., 1946. Analysis of fire spread in light forest fuels. J. of Agriculture Research Vol.72(3), pp.93-121

    Google Scholar 

  4. Emmons H. 1964. Fire in the forest. Fire Research Abstracts and Reviews. Vol.5, pp.163-178

    Google Scholar 

  5. Frandsen W.H. 1971. Fire spread through porous fuels from the conservation of energy. Combustion & Flame. Vol.16, pp.9-16

    Article  Google Scholar 

  6. Rothermel R (1972) A matrhematical model for predicting fire spread in wildland fuels. Technical report, USDA Forest Service Research, INT-115

  7. Finney MA (1998) FARSITE: fire area simulator, model development and evaluation. USDA-Forest Service Research, INT-4

  8. Weber R.O. 1991. Modelling fire spread through fuel beds. Prog. Energy Combust. Sci. Vol. 17, pp.67-82

    Article  Google Scholar 

  9. Sullivan A.L. 2009a. Wildland surface fire spread modelling 1990-2007: 1 Physical and quasi-physical models. Int. J. Wildland Fire. Vol.18(4), pp.349-368

    Article  Google Scholar 

  10. Sullivan A.L. 2009b. Wildland surface fire spread modelling 1990-2007: 2 Empirical and quasi-empirical models. Int. J. Wildland Fire. Vol.18(4), pp.369-386

    Article  Google Scholar 

  11. Sullivan A.L. 2009c. Wildland surface fire spread modelling 1990-2007: 3 Simulation and mathematical analog models. Int. J. Wildland Fire. Vol.18(4), pp.387-403

    Article  Google Scholar 

  12. Scott JH, Burgan RE (2005) Standard fire behavior fuel models: a comprehensive set for use with Rothermel’s surface fire spread model. USDA-Forest Service Research Report RMRS-GTR-153

  13. Hanson H.P., Bradley M.M., Bossert J.E., Linn R.R. 2000. The potential and promise of physics-based wildfire simulation. Environment Science Policy. Vol.3, pp.161-172

    Article  Google Scholar 

  14. Mell W., Jenkins M.A., Gould J., Cheney Ph.. 2007. A physics-based approach to modelling grassland fires. Int. J. Wildland Fire, Vol.16(1), pp. 1-22

    Article  Google Scholar 

  15. Pitts W.M. 1991 Wind effects on fires. Prog. Energy Combust. Sci. Vol.17, pp.83-134

    Article  Google Scholar 

  16. Pagny P.J., Peterson T.G. 1973 Flame spread through porous fuel. Proc. Combust. Instit. Vol.14, pp.1099-1107

    Google Scholar 

  17. Morvan D., Dupuy J.L. 2004. Modelling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation. Combustion & Flame, Vol.138, pp.199-210

    Article  Google Scholar 

  18. Linn R.R., Reisner J., Colman J.J., Winterkamp J. 2002. Studying wildfire behaviour using FIRETEC. Int. J. Wildland Fire, Vol.11, pp.233-246

    Article  Google Scholar 

  19. Zhou X., Mahalingam S., Weise D., 2007. Experimental Study and Large Eddy Simulation of Effect of Terrain Slope on Marginal Burning in Shrub Fuel Beds. Proc. Combust. Instit. Vol.31, pp.2547-2555

    Article  Google Scholar 

  20. Grishin AM (1997) In: Albini F (Ed) Mathematical modelling of forest fires and new methods of fighting them. Tomsk State University, Tomsk

  21. Baum HR, McGrattan KB (2000) Simulation of large industrial outdoor fires. In Fire Safety Science. In: Proceedings of the sixth international symposium. International Association for Fire Safety Science

  22. Jones W.P. 1994. Turbulence modelling and numerical solution methods for variables density and combusting flows. In Turbulent reacting flows. P.A. Libby and F.A. Williams. Academic. Chap.6, pp.309-374

    Google Scholar 

  23. Albini F.A. 1981. A model for the wind-blown flame from a line fire. Combustion & Flame. Vol. 43, pp.155-174

    Article  Google Scholar 

  24. Whelan R.J. 1995. The ecoly of fire. Cambridge University Press

    Google Scholar 

  25. Morvan D, Méradji S, Accary G (2008) Wildfire behavior study in a Mediterranean pine stand using a physically based model. Combust Sci Tech 180(2):230–248

    Article  Google Scholar 

  26. Morvan D., Méradji S., Accary G. 2009. Physical modelling of fire spread in Grasslands. Fire Safety J. Vol. 44, pp.50-61

    Article  Google Scholar 

  27. Byram G (1959) In: Davis K (Ed) Forest fire control and use. McGraw-Hill, New York, pp 90–123

  28. Nelson R.M. 1993. Byram’s derivation of the energy criterion for forest and wildland fires. Int. J. Wildland Fire, Vol. 3(3), pp.131-138

    Article  Google Scholar 

  29. Sullivan A.L. 2007. Convective Froude number and Byram’s energy criterion of Australian experimental grassland fires. Proc. Combust. Instit. Vol. 31, pp.2557-2564

    Article  Google Scholar 

  30. Pyne S.J., Adrews P.L., R.D. Laven. 1996. Introduction to wildland fire. 2nd Edition. John Wiley & Sons

    Google Scholar 

  31. Morvan D, Hoffman Ch, Rego F (2009) Numerical simulation of the interaction between two fire fronts in the context of suppression fire operations. In: 8th Symposium on fire and forest meteorology, Kalispell, MT-USA, 13–14 October 2009

  32. Finnigan J.J. 2000. Turbulence in plant canopies. Annu. Rev. Fluid Mech. Vol. 32, pp.519-571

    Article  Google Scholar 

  33. Kaimal J.C., Finnigan J.J. 1994. Atmospheric boundary layer flows. Oxford University Press, Oxford

    Google Scholar 

  34. Raupach M.R., Thom A.S. 1981. Turbulence in and above plant canopies. Annual Rev. Fluid Mech. Vol. 13, pp.97-129

    Article  Google Scholar 

  35. Ghisalberti M., Nepf H. 2006. The structure of the shear layer in flows over rigid and flexible canopies. Environmental Fluid Mechanics. Vol. 6, pp. 277-301

    Article  Google Scholar 

  36. Modest M.F. 2003. Radiative heat transfer. Academic 2 nd Edition

    Google Scholar 

  37. Warnatz J., Maas U., Dibble R.W. 1999. Combustion: Physical and chemical fundamentals, Modeling and simulation, Experiments, Pollutant formation. Springer 2 nd Edition

    MATH  Google Scholar 

  38. Cox G. 1996 (2nd Ed.). Combustion fundamentals of fire. Academic

    Google Scholar 

  39. Pope S.B. 2000. Turbulent flows. Cambridge University Press

    MATH  Google Scholar 

  40. Borghi R, Champion M (2000) Modélisation et théorie des flammes, TECHNIP edn

  41. Burrows N.D. 2001. Flame residence times and rates of weight loss of eucalypt. forest fuel particles, Int. J. of Wildland Fire. Vol. 10, pp.137-143

    Article  Google Scholar 

  42. Cheney NP (1981) In: Gill RH, Groves RH, Noble IR (eds) Fire and the Australian biota. Autralian Academy of Science, Canberra, p 151

  43. Linn RR (1997) A transport model for prediction of wildfire behaviour. PhD thesis University of New Mexico, LANL

  44. Larini M., Giroud F., Porterie B., Loraud J.C. 1998. A multiphase formulation for fire propagation in heterogeneous combustible media. Int. J. Heat & Mass Transfer. Vol. 41(6-7), pp.881-897

    Article  MATH  Google Scholar 

  45. Morvan D., Dupuy J.L., Porterie B., Larini M. 2000. Multiphase formulation applied to the modelling of fire spread through a forest fuel bed. Proc. Combust. Instit., Vol. 28, pp.2803-2809

    Article  Google Scholar 

  46. Mell W., Maranghides A., McDermott R., Manzello S.L. 2009. Numerical simulation and experiments of burning Douglas fir trees. Combustion & Flame, Vol. 156, pp.2023-2041

    Article  Google Scholar 

  47. Katul G.G., Mahrt L., Poggi D., Sanz Ch. 2004 One and two equations models for canopy turbulence. Boundary Layer Meteorology.Vol. 113, pp.81-109

    Article  Google Scholar 

  48. Tachajapong W., Lozano J., Mahalingam S., Zhou X., Weise D. 2008. An investigation of crown fuel bulk density effects on the dynamics of crown fire initiation. Combustion, Science & Technology, Vol. 180, pp.593-615

    Article  Google Scholar 

  49. Coelho P.J. 2007. Numerical simulation of the interaction between turbulence and radiation in reactive flow. Prog. Energy Combust. Sci. Vol. 33, pp.311-383

    Article  Google Scholar 

  50. Béguier C., Dekeyser I., Launder B.E. 1978. Ratio of scalar and velocity dissipation time scales in shear flow turbulence. Physics of Fluid. Vol. 21, pp.307-310

    Article  Google Scholar 

  51. Schiestel R (2006) Méthodes de modélisation et de simulation des écoulements turbulents. Lavoisier, Paris

    Google Scholar 

  52. Magnussen B.F., Hjertager B.H. 1976. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Instit., Vol. 16, pp.719-729

    Google Scholar 

  53. Magnussen B.F., Hjertager B.H., Olsen J.G, D. Bhaduri. 1978. Effects of turbulent structure and local concentrations on soot formation and combustion in C2H2 diffusion flames. Proc. Combust. Instit., Vol. 17, pp.1383-1393

    Google Scholar 

  54. Clark M.M., Fletcher T.H., Linn R.R. 2010. A sub-grid, mixture-fraction-based thermodynamic equilibrium model for gas phase combustion in FIRETEC: development and results. Int. J. of Wildland Fire. Vol. 19, pp.202-212

    Article  Google Scholar 

  55. Mell W, Charney JJ, Jenkins MA, Cheney Ph, Gould J (2005) Numerical simulations of grassland fire behaviour from the LANL-FIRETEC and NIST-WFDS models. Proceeding of EastFIRE conference, George Mason University, Fairfax, VA, 11–13 May 2005

  56. Dupuy J.L., Marechal J., Morvan D. 2003. Fires from a cylindrical forest fuel burner: combustion dynamics and flame properties. Combustion & Flame, Vol. 135, pp.65-76

    Article  Google Scholar 

  57. Catchpole W.R., Catchpole E.A., Butler B.W., Rothermel R.C., Morris G.A., Latham D.J. 1998. Rate of spread of free-burning fires in woody fuels in a wind tunnel. Combust. Sci. & Tech. Vol. 131, pp. 1-37

    Article  Google Scholar 

  58. Cheney N.P., Gould J.S., Catchpole W.R. 1993. The influence of fuel, weather and fire shape variables on fire-spread in grasslands. Int. J. of Wildland Fire. Vol. 3(1), pp.31-44

    Article  Google Scholar 

  59. Cheney N.P., Gould J.S. 1995. Fire growth in grassland fuels. Int. J. of Wildland Fire. Vol. 5(4), pp.237-247

    Article  Google Scholar 

  60. Cheney N.P., Gould J.S., Catchpole W.R. 1998. Prediction of fire spread in grasslands. Int. J. of Wildland Fire. Vol. 8(1), pp.1-13

    Article  Google Scholar 

  61. Linn RR, Cunningham Ph (2005) Numerical simulations of grass fires using a coupled atmosphere-fire model: basic fire behaviour and dependence on wind speed. J Geophys Res 110: D13107

    Article  Google Scholar 

  62. Mc Arthur (1976) Grassland fire danger meter MKV. CSIRO division of forest annual report 1976–1977, p 58

  63. Sauer JA, Linn RR (2009) Higrad/Firetec, Multiple fuel types: approach, implementation and idealized scenarios. In: 8th Symposium on fire and forest meteorology, Kalispell, Montana USA, 13–15 October 2009

  64. Mandel J., Bennethum L.S., Beezley J.D., Coen J.L., Douglas C.C., Kim M., Vodacek A. 2008. A wildland fire model with data assimilation. Mathematics & Computers in Simulation. Vol. 79, pp.584-606

    Article  MATH  MathSciNet  Google Scholar 

  65. Filippi JB, Bosseur F, Mari C, Stradda S (2009) Numerical experiments using MESONH/FOREFIRE coupled atmospheric model. In: 8th Symposium on fire and forest meteorology, Kalispell, Montana USA, 13–15 October 2009

  66. Andrews PL, Bevins CD (2003) In: Proceeding of the 2nd international congress on wildland fire ecology and fire management. 5th Symposium on fire and forest meteorology

Download references

Acknowledgment

Thanks are due to all those who helped with illustrations in this paper, especially W.E. (Ruddy) Mell from BFRL-NIST and S. Mahalingam and J. Lozano from University of California Riverside, and D. Weise from Pacific Southwest Research Station, Forest Fire Laboratory Riverside.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Morvan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morvan, D. Physical Phenomena and Length Scales Governing the Behaviour of Wildfires: A Case for Physical Modelling. Fire Technol 47, 437–460 (2011). https://doi.org/10.1007/s10694-010-0160-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-010-0160-2

Keywords

Navigation