Skip to main content

Advertisement

Log in

Implication of DNA repair genes in Lynch-like syndrome

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Many colorectal cancers (CRCs) that exhibit microsatellite instability (MSI) are not explained by MLH1 promoter methylation or germline mutations in mismatch repair (MMR) genes, which cause Lynch syndrome (LS). Instead, these Lynch-like syndrome (LLS) patients have somatic mutations in MMR genes. However, many of these patients are young and have relatives with cancer, suggesting a hereditary entity. We performed germline sequence analysis in LLS patients and determined their tumor’s mutational profiles using FFPE DNA. Six hundred and fifty-four consecutive CRC patients were screened for suspected LS using MSI and absence of MLH1 methylation. Suspected LS cases were exome sequenced to identify germline and somatic mutations. Single nucleotide variants were used to characterize mutational signatures. We identified 23 suspected LS cases. Germline sequence analysis of 16 available samples identified five cases with LS mutations and 11 cases without LS mutations, LLS. Most LLS tumors had a combination of somatic MMR gene mutation and loss of heterozygosity. LLS patients were relatively young and had excess first-degree relatives with cancer. Four of the 11 LLS patients had rare likely pathogenic variants in genes that maintain genome integrity. Moreover, tumors from this group had a distinct mutational signature compared to tumors from LLS patients lacking germline mutations in these genes. In summary, more than a third of the LLS patients studied had germline mutations in genes that maintain genome integrity and their tumors had a distinct mutational signature. The possibility of hereditary factors in LLS warrants further studies so counseling can be properly informed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

LS:

Lynch syndrome

LLS:

Lynch-like syndrome

MMR:

Mismatch repair

AA:

African American

WEA:

White European Americans

MSI:

Microsatellite instability

MSS:

Microsatellite stability

IHC:

Immunohistochemistry

YCGA:

Yale Center for Genome Analysis

SNVs:

Single-nucleotide variants

References

  1. Llor X (2012) When should we suspect hereditary colorectal cancer syndrome? Clin Gastroenterol Hepatol 10(4):363–367. https://doi.org/10.1016/j.cgh.2011.12.022

    Article  PubMed  Google Scholar 

  2. Geurts-Giele WR, Leenen CH, Dubbink HJ et al (2014) Somatic aberrations of mismatch repair genes as a cause of microsatellite-unstable cancers. J Pathol 234(4):548–559. https://doi.org/10.1002/path.4419

    Article  CAS  PubMed  Google Scholar 

  3. Mensenkamp AR, Vogelaar IP, van Zelst-Stams WA et al (2014) Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in Lynch syndrome-like tumors. Gastroenterology 146(3):643–646. https://doi.org/10.1053/j.gastro.2013.12.002

    Article  CAS  PubMed  Google Scholar 

  4. Jansen AM, van Wezel T, van den Akker BE et al (2016) Combined mismatch repair and POLE/POLD1 defects explain unresolved suspected Lynch syndrome cancers. Eur J Hum Genet 24(7):1089–1092. https://doi.org/10.1038/ejhg.2015.252

    Article  CAS  PubMed  Google Scholar 

  5. Morak M, Heidenreich B, Keller G et al (2014) Biallelic MUTYH mutations can mimic Lynch syndrome. Eur J Hum Genet 22(11):1334–1337. https://doi.org/10.1038/ejhg.2014.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elsayed FA, Kets CM, Ruano D et al (2015) Germline variants in POLE are associated with early onset mismatch repair deficient colorectal cancer. Eur J Hum Genet 23(8):1080–1084. https://doi.org/10.1038/ejhg.2014.242

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez-Soler M, Perez-Carbonell L, Guarinos C et al (2013) Risk of cancer in cases of suspected lynch syndrome without germline mutation. Gastroenterology 144(5):926–932. https://doi.org/10.1053/j.gastro.2013.01.044

    Article  CAS  PubMed  Google Scholar 

  8. Xicola RM, Gagnon M, Clark JR et al (2014) Excess of proximal microsatellite-stable colorectal cancer in African Americans from a multiethnic study. Clin Cancer Res 20(18):4962–4970. https://doi.org/10.1158/1078-0432.ccr-14-0353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xicola RM, Llor X, Pons E et al (2007) Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J Natl Cancer Inst 99(3):244–252

    Article  CAS  PubMed  Google Scholar 

  10. Goel A, Xicola RM, Nguyen TP et al (2010) Aberrant DNA methylation in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterology 138(5):1854–1862. https://doi.org/10.1053/j.gastro.2010.01.035

    Article  CAS  PubMed  Google Scholar 

  11. Gausachs M, Mur P, Corral J et al (2012) MLH1 promoter hypermethylation in the analytical algorithm of Lynch syndrome: a cost-effectiveness study. Eur J Hum Genet 20(7):762–768. https://doi.org/10.1038/ejhg.2011.277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Llor X, Pons E, Xicola RM et al (2005) Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin Cancer Res 11(20):7304–7310

    Article  CAS  PubMed  Google Scholar 

  13. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. https://doi.org/10.1093/nar/gkq603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krumm N, Sudmant PH, Ko A et al (2012) Copy number variation detection and genotyping from exome sequence data. Genome Res 22(8):1525–1532. https://doi.org/10.1101/gr.138115.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813–823. https://doi.org/10.1038/nrc1951

    Article  CAS  PubMed  Google Scholar 

  16. Network TCGA (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):7330–7337. https://doi.org/10.1038/nature11252

    Article  CAS  Google Scholar 

  17. Cibulskis K, Lawrence MS, Carter SL et al (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31(3):213–219. https://doi.org/10.1038/nbt.2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roberts SA, Gordenin DA (2014) Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer 14(12):786–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):7415–7421. https://doi.org/10.1038/nature12477

    Article  CAS  Google Scholar 

  20. Gehring JS, Fischer B, Lawrence M, Huber W (2015) SomaticSignatures: inferring mutational signatures from single-nucleotide variants. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv408

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brunet JP, Tamayo P, Golub TR, Mesirov JP (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA 101(12):4164–4169. https://doi.org/10.1073/pnas.0308531101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nik-Zainal S, Alexandrov LB, Wedge DC et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149(5):979–993. https://doi.org/10.1016/j.cell.2012.04.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hutchins LN, Murphy SM, Singh P, Graber JH (2008) Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics 24(23):2684–2690. https://doi.org/10.1093/bioinformatics/btn526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22(12):1540–1542. https://doi.org/10.1093/bioinformatics/btl117

    Article  CAS  PubMed  Google Scholar 

  25. Weren RD, Ligtenberg MJ, Kets CM et al (2015) A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer. Nat Genet 47(6):668–671. https://doi.org/10.1038/ng.3287

    Article  CAS  PubMed  Google Scholar 

  26. Segui N, Mina LB, Lazaro C et al (2015) Germline mutations in FAN1 cause hereditary colorectal cancer by impairing DNA repair. Gastroenterology 149(3):563–566. https://doi.org/10.1053/j.gastro.2015.05.056

    Article  CAS  PubMed  Google Scholar 

  27. Goldberg Y, Halpern N, Hubert A et al (2015) Mutated MCM9 is associated with predisposition to hereditary mixed polyposis and colorectal cancer in addition to primary ovarian failure. Cancer Genet 208(12):621–624. https://doi.org/10.1016/j.cancergen.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  28. Arora S, Yan H, Cho I et al (2015) Genetic variants that predispose to DNA double-strand breaks in lymphocytes from a subset of patients with familial colorectal carcinomas. Gastroenterology 149(7):1872–1883. https://doi.org/10.1053/j.gastro.2015.08.052

    Article  CAS  PubMed  Google Scholar 

  29. de Voer RM, Hahn MM, Mensenkamp AR et al (2015) Deleterious germline BLM mutations and the risk for early-onset colorectal cancer. Sci Rep 5:14060. https://doi.org/10.1038/srep14060

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ozgenc A, Loeb LA (2006) Werner syndrome, aging and cancer. Genome Dyn 1:206–217. https://doi.org/10.1159/000092509

    Article  CAS  PubMed  Google Scholar 

  31. Wu X, Mondal G, Wang X et al (2009) Microcephalin regulates BRCA2 and Rad51-associated DNA double-strand break repair. Cancer Res 69(13):5531–5536. https://doi.org/10.1158/0008-5472.can-08-4834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang B, Wang E, Dai H et al (2013) BRIT1 regulates p53 stability and functions as a tumor suppressor in breast cancer. Carcinogenesis 34(10):2271–2280. https://doi.org/10.1093/carcin/bgt190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wittschieben JP, Patil V, Glushets V, Robinson LJ, Kusewitt DF, Wood RD (2010) Loss of DNA polymerase zeta enhances spontaneous tumorigenesis. Cancer Res 70(7):2770–2778. https://doi.org/10.1158/0008-5472.can-09-4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. De Brakeleer S, De Greve J, Loris R et al (2010) Cancer predisposing missense and protein truncating BARD1 mutations in non-BRCA1 or BRCA2 breast cancer families. Hum Mutat 31(3):E1175–E1185. https://doi.org/10.1002/humu.21200

    Article  CAS  PubMed  Google Scholar 

  35. Ratajska M, Antoszewska E, Piskorz A et al (2012) Cancer predisposing BARD1 mutations in breast-ovarian cancer families. Breast Cancer Res Treat 131(1):89–97. https://doi.org/10.1007/s10549-011-1403-8

    Article  CAS  PubMed  Google Scholar 

  36. Norquist BM, Harrell MI, Brady MF et al (2016) Inherited mutations in women with ovarian carcinoma. JAMA Oncol 2(4):482–490. https://doi.org/10.1001/jamaoncol.2015.5495

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kawasaki T, Ohnishi M, Suemoto Y et al (2008) WRN promoter methylation possibly connects mucinous differentiation, microsatellite instability and CpG island methylator phenotype in colorectal cancer. Mod Pathol 21(2):150–158. https://doi.org/10.1038/modpathol.3800996

    Article  CAS  PubMed  Google Scholar 

  38. Santarosa M, Ashworth A (2004) Haploinsufficiency for tumour suppressor genes: when you don’t need to go all the way. Biochim Biophys Acta 1654(2):105–122. https://doi.org/10.1016/j.bbcan.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  39. Cabelof DC (2012) Haploinsufficiency in mouse models of DNA repair deficiency: modifiers of penetrance. Cell Mol Life Sci 69(5):727–740. https://doi.org/10.1007/s00018-011-0839-7

    Article  CAS  PubMed  Google Scholar 

  40. Gruber SB, Ellis NA, Scott KK et al (2002) BLM heterozygosity and the risk of colorectal cancer. Science 297(5589):2013

    Article  CAS  PubMed  Google Scholar 

  41. Theodoratou E, Campbell H, Tenesa A et al (2010) A large-scale meta-analysis to refine colorectal cancer risk estimates associated with MUTYH variants. Br J Cancer 103(12):1875–1884. https://doi.org/10.1038/sj.bjc.6605966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bouffler SD, Hofland N, Cox R, Fodde R (2000) Evidence for Msh2 haploinsufficiency in mice revealed by MNU-induced sister-chromatid exchange analysis. Br J Cancer 83(10):1291–1294. https://doi.org/10.1054/bjoc.2000.1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DeWeese TL, Shipman JM, Larrier NA et al (1998) Mouse embryonic stem cells carrying one or two defective Msh2 alleles respond abnormally to oxidative stress inflicted by low-level radiation. Proc Natl Acad Sci USA 95(20):11915–11920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rigter LS, Snaebjornsson P, Rosenberg EH et al (2018) Double somatic mutations in mismatch repair genes are frequent in colorectal cancer after Hodgkin’s lymphoma treatment. Gut 67(3):447–455. https://doi.org/10.1136/gutjnl-2016-312608

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the American Cancer Society Illinois Division (Grant No. 223187, X.L.), the National Cancer Institute (Grant Nos. U01 CA153060 and P30 CA023074, N.A.E. and 1K01CA204431-01A1 R.M.X.) and the Prevent Cancer Foundation (RMX). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

RMX, NAE, and XL designed and supervised the overall project, analyzed and interpreted the data, and drafted the manuscript. They take full responsibility for the integrity of the data and the accuracy of the data analysis. RMX, TC, JA, PM, and MR processed, prepared and analyzed samples. JRC enrolled patients and acquired data. RMX performed the statistical analysis. RE, and VA revised and selected all pathology specimens. FL and JC supervised the genomic analysis. SSK critically revised the manuscript for important intellectual content.The study sponsors had no role in the design of the study; no role in the collection, analysis, or interpretation of the data; no role in the writing of the manuscript; and no role in the decision to submit the manuscript for publication.

Corresponding author

Correspondence to Xavier Llor.

Ethics declarations

Conflict of interest

None of the authors have any potential conflicts of interest to disclose that are relevant to the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The results published here are in whole or part based upon data generated by The Cancer Genome Atlas managed by the NCI and NHGRI. Information about TCGA can be found at http://cancergenome.nih.gov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xicola, R.M., Clark, J.R., Carroll, T. et al. Implication of DNA repair genes in Lynch-like syndrome. Familial Cancer 18, 331–342 (2019). https://doi.org/10.1007/s10689-019-00128-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-019-00128-6

Keywords

Navigation