Skip to main content
Log in

Avoidance of host resistance in the oviposition-site preferences of rose bitterling

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

A contemporary outcome of dynamic host–parasite coevolution can be driven by the adaptation of a parasite to exploit its hosts at the population and species levels (parasite specialisation) or by local host adaptations leading to greater host resistance to sympatric parasite populations (host resistance). We tested the predominance of these two scenarios using cross-infection experiments with two geographically distant populations of the rose bitterling, Rhodeus ocellatus, a fish brood parasite of freshwater mussels, and four populations of their mussel hosts (two Anodonta woodiana and two Unio douglasiae populations) with varying degrees of geographic sympatry and local coexistence. Our data support predictions for host resistance at the species level but no effect of local coexistence between specific populations. Rhodeus ocellatus showed a preference for allopatric host populations, irrespective of host species. Host mussel response, in terms of ejection of R. ocellatus eggs, was stronger in the more widespread and abundant host species (A. woodiana) and this response tended to be higher in sympatric populations. These outcomes provide support for the importance of host resistance in bitterling oviposition-site decisions, demonstrating that host choice by R. ocellatus is adaptive by minimizing egg ejections. These findings imply that R. ocellatus, and potentially other bitterling species, may benefit from exploiting novel hosts, which may not possess appropriate adaptive responses to parasitism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adiba S, Huet M, Kaltz O (2010) Experimental evolution of local parasite maladaptation. J Evol Biol 23:1195–1205

    Article  CAS  PubMed  Google Scholar 

  • Agbali M, Reichard M, Bryjová A, Bryja J, Smith C (2010) Mate choice for non-additive genetic benefits correlate with MHC dissimilarity in the rose bitterling (Rhodeus ocellatus). Evolution 64:1683–1696

    Article  CAS  PubMed  Google Scholar 

  • Agbali M, Spence R, Reichard M, Smith C (2012) Direct fitness benefits are preferred when the strength of direct and indirect sexual selection are equivalent. Isr J Ecol Evol 58:279–288

    Google Scholar 

  • Aldridge DC (1999) Development of European bitterling in the gills of freshwater mussels. J Fish Biol 54:138–151

    Article  Google Scholar 

  • Auld SKJR, Penczykowski RM, Housley Ochs J, Grippi DC, Hall SR, Duffy MA (2013) Variation in costs of parasite resistance among natural host populations. J Evol Biol 26:2479–2486

    Article  CAS  PubMed  Google Scholar 

  • Bartoń K (2014) MuMIn—multi-model inference (R package version 1.15.1). R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B, Grothendieck G (2014) lme4: linear mixed-effects models using eigen and S4 (R package version 1.1–7). R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Casalini M, Agbali M, Reichard M, Konečná M, Bryjová A, Smith C (2009) Male dominance, female mate choice, and intersexual conflict in the rose bitterling (Rhodeus ocellatus). Evolution 63:366–376

    Article  PubMed  Google Scholar 

  • Casalini M, Reichard M, Phillips Smith C (2013) Male choice of mates and mating resources in the rose bitterling (Rhodeus ocellatus). Behav Ecol 24:1119–1204

    Article  Google Scholar 

  • Chang CH et al (2014) Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species. Mol Phylogent Evol 81:182–194

    Article  Google Scholar 

  • Davies NB (2015) Cuckoo: cheating by nature. Bloomsbury, London

    Google Scholar 

  • Davies NB, Brooke ML (1988) Cuckoos versus reed warblers: adaptations and counteradaptations. Anim Behav 36:262–284

    Article  Google Scholar 

  • Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc B: Biol Sci 205:489–511

  • Dillon RT (2000) The ecology of freshwater molluscs. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Douda K, Vrtílek M, Slavík O, Reichard M (2012) The role of host specificity in explaining the invasion success of the freshwater mussel Anodonta woodiana in Europe. Biol Invasion 14:127–137

    Article  Google Scholar 

  • Edmunds GF, Alstad DN (1978) Coevolution in insect herbivores and conifers. Science 199:941–945

    Article  PubMed  Google Scholar 

  • Font WF (2003) The global spread of parasites: what do Hawaiian streams tell us? Bioscience 53:1061–1067

    Article  Google Scholar 

  • Fox J et al (2016) Package ‘effects’ (R package version 3.1–2). R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Frankel VM, Hendry AP, Rolshausen G, Torchin ME (2015) Host preference of an introduced ‘generalist’ parasite for a non-native host. Int J Parasitol 45:703–709

    Article  PubMed  Google Scholar 

  • Greischar MA, Koskella B (2007) A synthesis of experimental work on parasite local adaptation. Ecol Lett 10:418–434

    Article  PubMed  Google Scholar 

  • Hanks LM, Denno RF (1994) Local adaptation in the armoured scale insect Pseudaulacaspis pentagona (Homoptera: Diaspididae). Ecology 75:2301–2310

    Article  Google Scholar 

  • Hasu T, Benesh DP, Valtonen ET (2009) Differences in parasite susceptibility and costs of resistance between naturally exposed and unexposed host populations. J Evol Biol 22:699–707

    Article  CAS  PubMed  Google Scholar 

  • He J, Zimin Z (2013) The freshwater bivalves of China. ConchBooks, Germany

    Google Scholar 

  • Hoeksema JD, Forde SE (2008) A meta-analysis of factors affecting local adaptation between interacting species. Am Nat 171:275–290

    Article  PubMed  Google Scholar 

  • Holland JN, DeAngelis DL, Schultz ST (2004) Evolutionary stability of mutualism: interspecific population regulation as an evolutionary stable strategy. Proc R Soc Lond B 271:1807–1814

    Article  Google Scholar 

  • Honza M, Procházka P, Stokke BG, Mosknes A, Røskaft E, Čapek M, Mrlík V (2004) Are blackcaps current winners in the evolutionary struggle against the common cuckoo? J Ethol 22:175–180

    Article  Google Scholar 

  • Ieno EN, Zuur AF (2015) data exploration and visualisation with R. Highland Statistics Ltd, Newburgh

    Google Scholar 

  • Joshi A, Thompson JN (1995) Trade-offs and the evolution of host specialization. Evol Ecol 9:82–92

    Article  Google Scholar 

  • Kaltz O, Shykoff JA (1998) Local adaptation in host–parasite systems. Heredity 81:361–370

    Article  Google Scholar 

  • Kawamura K, Ueda T, Arai R, Nagata Y, Saitoh K, Ohtaka H, Kanoh Y (2001) Genetic introgression by the rose bitterling, Rhodeus ocellatus ocellatus, into the Japanese rose bitterling, R. o. kurumeus (Teleostei: Cyprinidae). Zool Sci 18:1027–1039

    Article  CAS  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Article  Google Scholar 

  • Kelehear C, Saltonstall K, Torchin MM (2015) An introduced parasite (Raillietiella frenata) infects native cane toads (Rhinella marina) in Panama. Parasitol 142:675–679

    Article  Google Scholar 

  • Kitamura J (2005) Factors affecting seasonal mortality of rosy bitterling (Rhodeus ocellatus kurumeus) embryos on the gills of their host mussel. Popul Ecol 47:41–51

    Article  Google Scholar 

  • Krasnov BR, Poulin R, Mouillot D (2011) Scale-dependence of phylogenetic signal in ecological traits of ectoparasites. Ecography 34:114–122

    Article  Google Scholar 

  • Kuehn MJ (2009) Persistence versus decline of host defences against brood parasitism: a model system for studies of relaxed selection and phenotypic plasticity? Ph.D. thesis, University of California, Santa Barbara

  • Laine AL (2009) Role of coevolution in generating biological diversity: spatially divergent selection trajectories. J Exp Bot 60:2957–2970

    Article  CAS  PubMed  Google Scholar 

  • Lajeunesse MJ, Forbes MR (2002) Host range and local parasite adaptation. Proc R Soc Lond B 269:703–710

    Article  Google Scholar 

  • Liu H, Zhu Y, Smith C, Reichard M (2006) Evidence of host specificity and congruence between phylogenies of bitterlings and freshwater mussels. Zool Stud 45:428–434

    Google Scholar 

  • Lively CM, Jokela J (1996) Clinal variation for local adaptation in a host–parasite interaction. Proc R Soc Lond B 263:891–897

    Article  Google Scholar 

  • Medina I, Langmore NE (2016) The evolution of host specialisation in avian brood parasites. Ecol Lett 19:1110–1118

    Article  PubMed  Google Scholar 

  • Mills SC, Reynolds JD (2002) Mussel ventilation rates as a proximate cue for host selection by bitterling, Rhodeus sericeus. Oecologia 131:473–478

    Article  PubMed  Google Scholar 

  • Moret Y, Schmid-Hempel P (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science 290:1166–1168

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Method Ecol Evol 4:133–142

    Article  Google Scholar 

  • Pateman-Jones C, Rasotto MB, Reichard M, Liao C, Liu HZ, Zięba G, Smith C (2011) Variation in male reproductive traits among three bitterling fishes (Acheilognathinae: Cyprinidae) in relation to the mating system. Biol J Linn Soc 103:622–632

    Article  Google Scholar 

  • Phillips A, Reichard M, Smith C (2017) Sex differences in the oviposition-site decisions of a fish. Anim Behav (accepted)

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reichard M, Jurajda P, Smith C (2004a) Male-male interference competition decreases spawning rate in the European bitterling (Rhodeus sericeus). Behav Ecol Sociobiol 56:34–41

    Article  Google Scholar 

  • Reichard M, Smith C, Jordan WC (2004b) Genetic evidence reveals density-dependent mediated success of alternative mating tactics in the European bitterling (Rhodeus sericeus). Mol Ecol 13:1569–1578

    Article  CAS  PubMed  Google Scholar 

  • Reichard M, Ondračková M, Przybylski M, Liu HZ, Smith C (2006) The costs and benefits in an unusual symbiosis: experimental evidence that bitterling fish (Rhodeus sericeus) are parasites of unionid mussels in Europe. J Evol Biol 19:788–796

    Article  CAS  PubMed  Google Scholar 

  • Reichard M, Liu H, Smith C (2007a) The co-evolutionary relationship between bitterling fishes and freshwater mussels: insights from interspecific comparisons. Evol Ecol Res 9:1–21

    Google Scholar 

  • Reichard M, Przybylski M, Kaniewska P, Liu H, Smith C (2007b) A possible evolutionary lag in the relationship between freshwater mussels and European bitterling. J Fish Biol 70:709–725

    Article  Google Scholar 

  • Reichard M, Polačik M, Tarkan AS, Spence R, Gaygusuz Ö, Ercan E, Ondračková M, Smith C (2010) The bitterling–mussel coevolutionary relationship in areas of recent and ancient sympatry. Evolution 64:3047–3056

    PubMed  Google Scholar 

  • Reichard M, Bryja J, Polačik M, Smith C (2011) No evidence for host specialization or host-race formation in the European bitterling (Rhodeus amarus), a fish that parasitizes freshwater mussels. Mol Ecol 20:3631–3643

    CAS  PubMed  Google Scholar 

  • Reichard M, Vrtílek M, Douda K, Smith C (2012) An invasive species reverses the roles in a host–parasite relationship between fish and unionid mussels. Biol Lett 8:601–604

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichard M, Douda K, Przybyłski M, Popa OP, Karbanová E, Matasová K et al (2015) Population-specific responses to an invasive species. Proc R Soc Lond B 282:20151063

    Article  Google Scholar 

  • Rigby M, Moret Y (2000) Life-history trade-offs with immune defenses. In: Poulin R, Morand S, Skorping A (eds) Evolutionary biology of host–parasite relationships: theory meets reality. Elsevier, Amsterdam, pp 129–142

    Google Scholar 

  • Rothstein SI, Robinson SK (1998) Parasitic birds and their hosts. Studies in coevolution. Oxford University Press, Oxford

    Google Scholar 

  • Schmid-Hempel P (2003) Variation in immune defence as a question of evolutionary ecology. Proc R Soc Lond B 270:357–366

    Article  Google Scholar 

  • Smith C (2017) Bayesian inference supports the host selection hypothesis in explaining adaptive host specificity by European bitterling. Oecologia 183:379–389

    Article  PubMed  Google Scholar 

  • Smith C, Reichard M (2013) A sperm competition model for the European bitterling (Rhodeus amarus). Behaviour 150:1709–1730

    Article  Google Scholar 

  • Smith C, Rippon K, Douglas A, Jurajda P (2001) A proximate cue for oviposition site choice in the bitterling (Rhodeus sericeus). Freshw Biol 46:903–911

    Article  Google Scholar 

  • Smith C, Reichard M, Jurajda P (2003) Assessment of sperm competition by European bitterling, Rhodeus sericeus. Behav Ecol Sociobiol 53:206–213

    Article  Google Scholar 

  • Smith C, Reichard M, Jurajda P et al (2004) The reproductive ecology of the European bitterling (Rhodeus sericeus). J Zool Lond 262:107–124

    Article  Google Scholar 

  • Sorenson MD, Sefc KM, Payne RB (2003) Speciation by host switch in brood parasitic indigobirds. Nature 424:928–931

    Article  CAS  PubMed  Google Scholar 

  • Spence R, Smith C (2013) Rose bitterling (Rhodeus ocellatus) embryos parasitise freshwater mussels by competing for nutrients and oxygen. Acta Zool 94:113–118

    Article  Google Scholar 

  • Thompson JN (1994) The Coevolutionary Process. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Thompson JN (1999) The raw material for coevolution. Oikos 84:5–16

    Article  Google Scholar 

  • Thompson JN (2013) Relentless evolution. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Vasil’eva ED, Mamilov NS, Magda IN (2015) New species of Cypriniform fishes (Cypriniformes) in the fauna of the Balkhash-Ili basin, Kazhakhstan. J Ichthyol 55:447–453

    Article  Google Scholar 

  • Voutilainen A, Valdez H, Karvonen A, Kortet R, Kuukka H, Peuhkuri N, Piironen J, Taskinen J (2009) Infectivity of trematode eye flukes in farmed salmonid fish—effects of parasite and host origins. Aquaculture 293:108–112

    Article  Google Scholar 

  • Watters GT (1997) A synthesis and review of the expanding range of the Asian freshwater mussel Anodonta woodiana (Lea, 1834) (Bivalvia, Unionidae). Veliger 40:152–156

    Google Scholar 

  • Welcomme RL (1988) International introductions of inland aquatic species. FAO Fish Tech Pap 294:318

    Google Scholar 

  • Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical applications of the co-evolution of pathogens and their hosts. Nat Genet 32:569–577

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding came from the Czech Science Foundation (13-05872S). MR and CS designed the study. RR collected data with the help of HL, CM, KD, DY, and QT. CS, RR and MR analysed the data and RR, CS and MR drafted the ms, with contributions from HL and KD. We thank John Endler, Matt Hall and four anonymous referees for their constructive comments. Primary data associated with the paper are deposited at Figshare Repository (10.6084/m9.figshare.4797886).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Reichard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouchet, R., Smith, C., Liu, H. et al. Avoidance of host resistance in the oviposition-site preferences of rose bitterling. Evol Ecol 31, 769–783 (2017). https://doi.org/10.1007/s10682-017-9907-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-017-9907-2

Keywords

Navigation