Skip to main content

Advertisement

Log in

Genetic divergence in tropical anurans: deeper phylogeographic structure in forest specialists and in topographically complex regions

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Many tropical organisms show large genetic differences among populations, yet the prevalent drivers of the underlying divergence processes are incompletely understood. We explored the effect of several habitat and natural history features (body size, macrohabitat, microhabitat, reproduction site, climatic heterogeneity, and topography) on population genetic divergence in tropical amphibians, based on a data set of 2680 DNA sequences of the mitochondrial cytochrome b gene in 39 widely distributed frog species from Brazil, Central America, Cuba, and Madagascar. Generalized linear models were implemented in an information-theoretic framework to evaluate the effects of the six predictors on genetic divergence among populations, measured as spatially corrected pairwise distances. Results indicate that topographic complexity and macrohabitat preferences have a strong effect on population divergence with species specialized to forest habitat and/or from topographically complex regions showing higher phylogeographic structure. This relationship changed after accounting for phylogenetic relatedness among taxa rendering macrohabitat preferences as the most important feature shaping genetic divergence. The remaining predictors showed negligible effects on the observed genetic divergence. A similar analysis performed using the population-scaled mutation rate (Θ) as response variable showed little effect of the predictors. Our results demonstrate greater evolutionary independence among populations of anurans from forested regions versus species from open habitats. This pattern may result from lower vagility and stringency in reproductive requirements of rainforest species. Conversely, open landscapes may offer ephemeral and unstable breeding sites suitable for vagile generalist species, resulting in reduced intraspecific divergence. Our results predict that, for a given period of time, there should be a higher chance of speciation in tropical anurans living in forests than in species adapted to open habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguinagalde I, Hampe A, Mohanty A, Martín JP, Duminil J, Petit RJ (2005) Effects of life-history traits and species distribution on genetic structure at maternally inherited markers in European trees and shrubs. J Biogeogr 32:329–339

    Article  Google Scholar 

  • Alvarez N, Thiel-Egenter C, Tribsch A, Holderegger R, Manel S, Schönswetter P, Taberlet P, Brodbeck S, Gaudeul M, Gielly L, Küpfer P, Mansion G, Negrini R, Paun O, Pellecchia M, Rioux D, Schüpfer F, Loo MV, Winkler M, Gugerli F, Consortium I (2009) History or ecology? Substrate type as a major driver of spatial genetic structure in Alpine plants. Ecol Lett 12:632–640

    Article  PubMed  Google Scholar 

  • Arbogast BS, Kenagy GJ (2001) Comparative phylogeography as an integrative approach to historical biogeography. J Biogeogr 28:819–825

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Avise JC (2009) Phylogeography: retrospect and prospect. J Biogeogr 36:3–15

    Article  Google Scholar 

  • Avise JC, Arnoldt J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Article  Google Scholar 

  • Babik W, Branicki W, Sandera M, Litvinchuk SN, Borkin LJ, Irwin JT, Rafiński J (2004) Mitochondrial phylogeography of the moor frog, Rana arvalis. Mol Ecol 13:1469–1480

    Article  CAS  PubMed  Google Scholar 

  • Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572

    Article  CAS  PubMed  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Article  PubMed  Google Scholar 

  • Blonde B, Lamanna C, Violle C, Enquist BJ (2014) The n-dimensional hypervolume. Global Ecol Biogeogr 23:595–609

    Article  Google Scholar 

  • Bossuyt F, Milinkovitch MC (2000) Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc Natl Acad Sci USA 97:6585–6590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown JL, Yoder AD (2015) Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecol Evol 5:1131–1142

    Article  PubMed Central  PubMed  Google Scholar 

  • Bruford MW, Hanotte O, Brookfield JFY, Burke T (1992) Single-locus and multilocus DNA fingerprinting. In: Hoelzel AR (ed) Molecular genetic analysis of populations: a practical approach. IRL Press, Oxford, pp 225–270

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35

    Article  Google Scholar 

  • Burns EL, Eldridge MDB, Crayn DM, Houlden BA (2007) Low phylogeographic structure in a widespread endangered Australian frog Litoria aurea (Anura: Hylidae). Conserv Genet 8:17–32

    Article  Google Scholar 

  • Calcagno V, de Mazancourt C (2010) glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34:1–29

    Google Scholar 

  • Carnaval AC (2002) Phylogeography of four frog species in forest fragments of northeastern Brazil—a preliminary study. Integr Comp Biol 42:913–921

    Article  PubMed  Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian atlantic forest. J Biogeogr 35:1187–1201

    Article  Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323:785–789

    Article  CAS  PubMed  Google Scholar 

  • Chan LM, Zamudio KR (2009) Population differentiation of temperate amphibians in unpredictable environments. Mol Ecol 18:3185–3200

    Article  PubMed  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland

    Google Scholar 

  • Crottini A, Andreone F, Kosuch J, Borkin LJ, Litvinchuk SN, Eggert C, Veith M (2007) Fossorial but widespread: the phylogeography of the common spadefoot toad (Pelobates fuscus). Mol Ecol 16:2374–2754

    Article  Google Scholar 

  • Currat M, Ruedi M, Petit RJ, Excoffier L (2008) The hidden side of invasions: massive introgression by local genes. Evolution 62:1908–1920

    PubMed  Google Scholar 

  • de Queiroz K (2007) Species concepts and species delimitation. Sys Biol 56:879–886

    Article  Google Scholar 

  • Dubois A (2004) Developmental pathway, speciation and supraspecific taxonomy in amphibians 1. Why are there so many frog species in Sir Lanka? Alytes 22:19–37

    Google Scholar 

  • Duminil J, Fineschi S, Hampe A, Jordano P, Salvini D, Vendramin GG, Petit RJ (2007) Can population genetic structure be predicted from life-history traits? Am Nat 169:662–672

    Article  PubMed  Google Scholar 

  • Endler JA (1992) Genetic heterogeneity and ecology. In: Berry RJ, Crawford TJ, Hewitt GM (eds) Genes in ecology. Blackwell Science, Oxford, pp 315–334

    Google Scholar 

  • Fleming K, Johnston P, Zwartz D, Yokoyama Y, Lambeck K, Chappell J (1998) Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth Planet Sci Lett 163:327–342

    Article  CAS  Google Scholar 

  • Fouquet A, Noonan BP, Rodriguez MT, Pech N, Gilles A, Gemmell NJ (2012) Multiple quaternary refugia in the eastern Guiana Shield revealed by comparative phylogeography of 12 frog species. Sys Biol 61:461–489

    Article  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Galarza JA, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, Turner GF, Rico C (2009) The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc Natl Acad Sci USA 106:1473–1478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaston KJ, Blackburn TM (1996) Range size-body size relationships: evidence of scale dependence. Oikos 75:479–485

    Article  Google Scholar 

  • Gehara M, Summers K, Brown JL (2013a) Population expansion, isolation and selection: novel insights on the evolution of color diversity in the strawberry poison frog. Evol Ecol 27:797–824

    Article  Google Scholar 

  • Gehara M, Canedo C, Haddad CFB, Vences M (2013b) From widespread to microendemic: molecular and acoustic analyses show that Ischnocnema guentheri (Amphibia: Brachycephalidae) is endemic to Rio de Janeiro, Brazil. Conserv Genet 14:973–982

  • Gehring P-S, Pabijan M, Randrianirina JE, Glaw F, Vences M (2012) The influence of riverine barriers on phylogeographic patterns of Malagasy reed frogs (Heterixalus). Mol Phylogenet Evol 64:618–632

    Article  PubMed  Google Scholar 

  • Gomez-Uchida D, Knight TW, Riuzzante DE (2009) Interaction of landscape and life history attributes on genetic diversity, neutral divergence and gene flow in a pristine community of salmonids. Mol Ecol 18:4854–4869

    Article  PubMed  Google Scholar 

  • Grohmann CH, Smith MJ, Riccomini C (2011) Multiscale analysis of topographic surface roughness in the Midland Valley, Scotland. IEEE Trans Geosci Remote Sens 49:1200–1213

  • Grosberg RK, Cunningham CW (2001) Genetic structure in the sea: from populations to communities. In: Bertness MD, Gaines S, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, pp 61–84

    Google Scholar 

  • Guarnizo CE, Cannatella DC (2013) Genetic divergence within frog species is greater in topographically more complex regions. J Zool Syst Evol Res 51:333–340

    Google Scholar 

  • Guarnizo CE, Cannatella DC (2014) Geographic determinants of gene flow in two sister species of tropical Andean frogs. J Hered 105:216–225

    Article  PubMed  Google Scholar 

  • Hauswaldt JS, Ludewig A-K, Vences M, Pröhl H (2011) Widespread co-occurrence of divergent mitochondrial haplotype lineages in a Central American species of poison frog (Oophaga pumilio). J Biogeogr 38:711–726

    Article  Google Scholar 

  • Hedrick PW (2013) Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 22:4606–4618

    Article  PubMed  Google Scholar 

  • Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, Rissler LJ, Victoriano PF, Yoder AD (2010) Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol Phylogenet Evol 54:291–301

    Article  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Irwin DE (2002) Phylogeographic breaks without geographic barriers to gene flow. Evolution 56:2383–2394

    Article  PubMed  Google Scholar 

  • Iturralde-Vinent MA (2006) Meso-cenozoic Caribbean paleogeography: implications for the historical biogeography of the region. Int Geol Rev 48:791–827

    Article  Google Scholar 

  • IUCN (2013) The IUCN red list of threatened species. In: International Union for Conservation of Nature and Natural Resources

  • Jehle R, Burke T, Arntzen JW (2005) Delineating fine-scale genetic units in amphibians: probing the primacy of ponds. Conserv Genet 6:227–234

    Article  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  CAS  PubMed  Google Scholar 

  • Knutson MG, Richardson WB, Reineke DM, Gray BR, Parmelee JR, Weick SE (2004) Agricultural ponds support amphibian populations. Ecol Appl 14:669–684

    Article  Google Scholar 

  • Kuchta SR, Tan A-M (2005) Isolation by distance and post-glacial range expansion in the rough-skinned newt, Taricha granulosa. Mol Ecol 14:225–244

    Article  PubMed  Google Scholar 

  • Liu K, Wang F, Chen W, Tu L, Min M-S, Bi K, Fu J (2010) Rampant historical mitochondrial genome introgression between two species of green pond frogs, Pelophylax nigromaculatus and P. plancyi. BMC Evol Biol 10:201

    Article  PubMed Central  PubMed  Google Scholar 

  • Luiz OJ, Madin JS, Robertson DR, Rocha LA, Wirtz P, Floeter SR (2012) Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc R Soc B 279:1033–1040

    Article  PubMed Central  PubMed  Google Scholar 

  • Makowsky R, Chesser J, Rissler LJ (2009) A striking lack of genetic diversity across the wide-ranging amphibian Gastrophryne carolinensis (Anura, Microhylidae). Genetica 135:169–183

    Article  PubMed  Google Scholar 

  • Measey GJ, Vences M, Drewes RC, Chiari Y, Melo M, Bourles B (2007) Freshwater paths across the ocean: molecular phylogeny of the frog Ptychadena newtoni gives insights into amphibian colonization of oceanic islands. J Biogeogr 34:7–20

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: Fst and related measures. Mol Ecol Res 11:5–18

    Article  Google Scholar 

  • Nabholz B, Glémin S, Galtier N (2009) The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evol Biol 9:54

    Article  PubMed Central  PubMed  Google Scholar 

  • Nevo E, Beiles A (1991) Genetic diversity and ecological heterogeneity in amphibian evolution. Copeia 1991:565–592

    Article  Google Scholar 

  • Pabijan M, Wollenberg KC, Vences M (2012) Small body size increases the regional differentiation of populations of tropical mantellid frogs (Anura: Mantellidae). J Evol Biol 25:2310–2324

    Article  PubMed  Google Scholar 

  • Papadopoulou A, Anastasiou I, Keskin B, Vogler AP (2009) Comparative phylogeography of tenebrionid beetles in the Aegean archipelago: the effect of dispersal ability and habitat preference. Mol Ecol 18:2503–2517

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou A, Anastasiou I, Spagopoulou F, Stalimerou M, Terzopoulou S, Legakis A, Vogler AP (2011) Testing the species–genetic diversity correlation in the Aegean archipelago: toward a haplotype-based macroecology? Am Nat 178:241–255

    Article  PubMed  Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Peterson MA, Denno RF (1998) The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. Am Nat 152:428–446

    Article  CAS  PubMed  Google Scholar 

  • Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439:803

    Article  CAS  PubMed  Google Scholar 

  • Pyron RA, Wiens JJ (2011) A large-scale phylogeny of Amphibia including over 2,800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 61:543–583

    Article  PubMed  Google Scholar 

  • Rabemananjara FCE, Chiari Y, Ramilijaona OR, Vences M (2007) Evidence for recent gene flow between north-eastern and south-eastern Madagascan poison frogs from a phylogeography of the Mantella cowani group. Front Zool 4:1

    Article  PubMed Central  PubMed  Google Scholar 

  • R-Development Core Team (2014) R: A language and environment for statistical computing. Version 3.1.1. R Foundation for Statistical Computing, Vienna, Austria

  • Richardson JL (2012) Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol Ecol 21:4437–4451

    Article  PubMed  Google Scholar 

  • Riddle BR, Hafner DJ (1999) Species as units of analysis in ecology and biogeography: time to take the blinders off. Global Ecol Biogeogr 8:433–441

    Article  Google Scholar 

  • Rissler LJ, Smith WH (2010) Mapping amphibian contact zones and phylogeographical break hotspots across the United States. Mol Ecol 19:5404–5416

    Article  PubMed  Google Scholar 

  • Robertson JM, Duryea MC, Zamudio KR (2009) Discordant patterns of evolutionary differentiation in two Neotropical treefrogs. Mol Ecol 18:1375–1395

    Article  PubMed  Google Scholar 

  • Rocha LA, Rocha CR, Robertson DR, Bowen BW (2008) Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean. BMC Evol Biol 8:e157

    Article  Google Scholar 

  • Romiguier J, Gayral P, Ballenghien M, Bernard A, Cahais V, Chenuil A, Chiari Y, Dernat R, Duret L, Faivre N, Loire E, Lourenco JM, Nabholz B, Roux C, Tsagkogeorga G, Weber AA, Weinert LA, Belkhir K, Bierne N, Glémin S, Galtier N (2014) Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515:261–263

    Article  CAS  PubMed  Google Scholar 

  • Santos JC (2012) Fast molecular evolution associated with high active metabolic rates in poison frogs. Mol Biol Evol 29:2001–2018

    Article  CAS  PubMed  Google Scholar 

  • Scheffers BR, Edwards DP, Diesmos A, Williams SE, Evans TA (2014) Microhabitats reduce animal’s exposure to climate extremes. Glob Change Biol 20:495–503

    Article  Google Scholar 

  • Schliep KP (2011) phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Servant M, Maley J, Turcq B, Absy M-L, Brenac P, Fournier M, Ledru M-P (1993) Tropical forest changes during the Late Quaternary in African and South American lowlands. Global Planet Change 7:25–40

    Article  Google Scholar 

  • Smith SA, Oca ANMd, Reeder TW, Wiens JJ (2007) A phylogenetic perspective on elevational species richness patterns in Middle American treefrogs: why so few species in lowland tropical rainforests? Evolution 61:1188–1207

    Article  PubMed  Google Scholar 

  • Swofford DL (2003) PAUP* Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomas MF (2008) Understanding the impacts of Late Quaternary climate change in tropical and sub-tropical regions. Geomorphology 101:146–158

    Article  Google Scholar 

  • Tilston-Smith B, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, Pérez-Emán J, Burney CW, Xie X, Harvey MG, Faircloth BC, Glenn TC, Derryberry EP, Prejean J, Fields S, Brumfield RT (2014) The drivers of tropical speciation. Nature 515:406–409

    Article  Google Scholar 

  • Turelli M, Barton NH, Coyne JA (2001) Theory and speciation. Trends Ecol Evol 16:330–343

    Article  PubMed  Google Scholar 

  • Van Bocxlaer I, Loader SP, Roelants K, Biju SD, Menegon M, Bossuyt F (2010) Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 372:679–682

    Article  Google Scholar 

  • Vásquez D, Correa C, Pastenes L, Palma RE, Méndez MA (2013) Low phylogeographic structure of Rhinella arunco (Anura: Bufonidae), an endemic amphibian from the Chilean Mediterranean hotspot. Zool Stud 52:35e

    Article  Google Scholar 

  • Vences M, Wake DB (2007) Speciation, species boundaries and phylogeography of amphibians. In: Heatwole H (ed) Amphibian Biology. Surrey Beatty & Sons, Chipping Norton, pp 2613–2671

    Google Scholar 

  • Vences M, Aprea G, Capriglione T, Andreone F, Odierna G (2002) Ancient tetraploidy and slow molecular evolution in Scaphiophryne: ecological correlates of speciation mode in Malagasy relict amphibians. Chromosome Res 10:127–136

    Article  CAS  PubMed  Google Scholar 

  • Vences M, Vieites DR, Glaw F, Brinkmann H, Kosuch J, Veith M, Meyer A (2003) Multiple overseas dispersal in amphibians. Proc R Soc B 270:2435–2442

    Article  PubMed Central  PubMed  Google Scholar 

  • Vences M, Hauswaldt JS, Steinfartz S, Rupp O, Goesmann A, Künzel S, Orozco-terWengel P, Vieites DR, Nieto-Roman S, Haas S, Laugsch C, Gehara M, Bruchmann S, Pabijan M, Ludewig A-K, Rudert D, Angelini C, Borkin LJ, Crochet P-A, Crottini A, Dubois A, Ficetola GF, Galán P, Geniez P, Hachtel M, Jovanovic O, Litvinchuk SN, Lymberakis P, Ohler A, Smirnov NA (2013) Radically different phylogeographies and patterns of genetic variation in two European brown frogs, genus Rana. Mol Phylogenet Evol 68:657–670

    Article  PubMed  Google Scholar 

  • Wells KD (2007) The ecology and behavior of amphibians. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Wollenberg KC, Vieites DR, van der Meijden A, Glaw F, Cannatella DC, Vences M (2008) Patterns of endemism and species richness in Malagasy cophyline frogs support a key role of mountainous areas for speciation. Evolution 62:1890–1907

    Article  PubMed  Google Scholar 

  • Wollenberg KC, Vieites DR, Glaw F, Vences M (2011) Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs. BMC Evol Biol 11:217. doi:10.1186/1471-2148-11-217

    Article  PubMed Central  PubMed  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed Central  CAS  PubMed  Google Scholar 

  • Youngquist MB, Boone MD (2014) Movement of amphibians through agricultural landscapes: the role of habitat on edge permeability. Biol Conserv 175:148–155

    Article  Google Scholar 

  • Zeisset I, Beebe TJC (2008) Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity 101:109–119

    Article  CAS  PubMed  Google Scholar 

  • Zieliński P, Nadachowska-Brzyska K, Wielstra B, Szkotak R, Covaciu-Marcov SD, Cogălniceanu D, Babik W (2013) No evidence for nuclear introgression despite complete mtDNA replacement in the Carpathian newt (Lissotriton montandoni). Mol Ecol 22:1884–1903

    Article  PubMed  Google Scholar 

  • Zink RM (2002) Methods in comparative phylogeography, and their application to studying evolution in the North American aridlands. Integr Comp Biol 42:953–959

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to numerous friends and colleagues who have contributed samples and sequences for the present project, or provided assistance during fieldwork. In particular we would like to thank (in alphabetic order) Roberto Alonso, Franco Andreone, Adrian Garda, Sebastian Gehring, Frank Glaw, Jörn Köhler, Roger-Daniel Randrianiaina, Fanomezana Ratsoavina, Leslie Rissler, Axel Strauß, Chris Thawley, and David R. Vieites. Thanks are also due to Meike Kondermann and Gabi Keunecke for help with labwork. We are grateful to authorities in Brazil, Cuba and Madagascar for research, collection, and export permits. This study was carried with funds of the Deutsche Forschungsgemeinschaft (Grant VE247/7-1 to MV). AR and MP were supported by postdoctoral fellowships of the Humboldt Foundation. MG was supported by the Katholischer Akademischer Austauschdienst. CFBH was supported by Grants #2008/50928-1 and #2013/50741-7, São Paulo Research Foundation (FAPESP), and Grant #302518/2013-4, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Vences.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 21789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, A., Börner, M., Pabijan, M. et al. Genetic divergence in tropical anurans: deeper phylogeographic structure in forest specialists and in topographically complex regions. Evol Ecol 29, 765–785 (2015). https://doi.org/10.1007/s10682-015-9774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-015-9774-7

Keywords

Navigation