Skip to main content

Advertisement

Log in

Retrospective coalescent methods and the reconstruction of metapopulation histories in the sea

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Phylogeographic analyses are a key interface between ecological and evolutionary ways of knowing because such analyses integrate the cumulative effects of demographic (ecological) processes over geological (evolutionary) time scales. Newly developed coalescent methods allow evolutionary ecologists to overcome some limitations associated with inferring population history from classic methods such as Wright’s F ST. Here we briefly contrast classic and coalescent methods for looking backward in time through a population genetic lens, focusing on the key advantages of the isolation-with-migration (IM) class of coalescent methods for distinguishing ancient connectedness from actual recurrent contemporary gene flow as causes of genetic similarity or differentiation among populations. Making this critical distinction can lead to the discovery of otherwise obscured histories underlying conventional patterns of spatial variation. We illustrate the importance of these insights using analyses of Pacific fishes, snails, and sea stars in which population sizes and divergence times are more important than rates of contemporary gene flow as determinants of population genetic differentiation. We then extend the IM method to genetic data from two model metapopulation species (California abalone, Australian damselfish). The analyses show the potential use of non-equilibrium IM methods for differentiating among metapopulation models that make different predictions about population parameters and have different implications for the design of marine protected areas and other conservation goals. At face value, the results largely rule out classic metapopulation dynamics (dominated by extinction and colonization rather than connectivity via ongoing recurrent gene flow) but, at the same time, do not strongly support a modern marine metapopulation dynamic (ecologically significant connectivity between demes). However, the results also highlight the need for much more data (i.e., loci) sampled on different spatial scales in order to determine whether metapopulation dynamics might exist on smaller scales than are typically sampled by most phylogeographers and landscape geneticists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson CD, Epperson BK, Fortin MJ et al (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575

    Article  PubMed  Google Scholar 

  • Avise JC (1989) Gene trees and organismal histories: a phylogenetic approach to population biology. Evolution 43:1192–1208

    Article  Google Scholar 

  • Avise JC (2004) Molecular markers, natural history, and evolution, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Avise JC, Walker D (1998) Pleistocene phylogeographic effects on avian populations and the speciation process. Proc Biol Sci 265:457–463

    Article  PubMed  CAS  Google Scholar 

  • Bahlo M, Griffiths RC (2000) Inference from gene trees in a subdivided population. Theor Popul Biol 57:79–95

    Article  PubMed  CAS  Google Scholar 

  • Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2000) Biogeography. A marine Wallace’s line? Nature 406:692–693

    Article  PubMed  CAS  Google Scholar 

  • Bay LK, Caley MJ, Crozier RH (2008) Meta-population structure in a coral reef fish demonstrated by genetic data on patterns of migration, extinction and recolonisation. BMC Evol Biol 8:248–264

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA, Nielsen R, Robert C et al (2010) In defense of model-based inference in phylogeography. Mol Ecol 19:436–446

    Article  CAS  Google Scholar 

  • Becquet C, Przeworski M (2007) A new approach to estimate parameters of speciation models with application to apes. Genome Res 17:1505–1519

    Article  PubMed  CAS  Google Scholar 

  • Beerli P (2004) Effect of unsampled populations on the estimation of population sizes and migration rates between sampled populations. Mol Ecol 13:827–836

    Article  PubMed  Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773

    PubMed  CAS  Google Scholar 

  • Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568

    Article  PubMed  CAS  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  PubMed  CAS  Google Scholar 

  • Bossart JL, Prowell DP (1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Ecol Evol 13:202–206

    Article  PubMed  CAS  Google Scholar 

  • Broquet T, Petit E (2009) Molecular estimation of dispersal for ecology and population genetics. Annu Rev Ecol Evol Syst 20:193–216

    Article  Google Scholar 

  • Burton RS, Feldman MS (1981) Population genetics of Tigriopus californicus: II. Differentiation among neighboring populations. Evolution 35:1192–1205

    Article  Google Scholar 

  • Cannings C, Thompson E (1981) Genealogical and genetic structure. Cambridge University Press, Cambridge

    Google Scholar 

  • Chabot CL, Allen LG (2009) Global population structure of the tope (Galeorhinus galeus) inferred by mitochondrial control region sequence data. Mol Ecol 18:545–552

    Article  PubMed  CAS  Google Scholar 

  • Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Annu Rev Mar Sci 1:443–466

    Article  Google Scholar 

  • Crisp DJ (1978) Genetic consequences of different reproductive strategies in marine invertebrates. NATO Conf Ser IV Marine Sci 2:257–273

    Google Scholar 

  • Crow JF, Aoki K (1984) Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc Natl Acad Sci USA 81:6073–6077

    Article  PubMed  CAS  Google Scholar 

  • Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Domingues VS, Bucciarelli G, Almada VC et al (2005) Historical colonization and demography of the Mediterranean damselfish, Chromis chromis. Mol Ecol 14:4051–4063

    Article  PubMed  Google Scholar 

  • Edmands S (2001) Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol Ecol 10:1743–1750

    Article  PubMed  CAS  Google Scholar 

  • Edwards S, Bensch S (2009) Looking forwards or looking backwards in avian phylogeography? A comment on Zink and Barrowclough 2008. Mol Ecol 18:2930–2931

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich PR, White RR, Singer MC et al (1975) Checkerspot butterflies: a historical perspective. Science 188:221–228

    Article  PubMed  CAS  Google Scholar 

  • Ewens WJ (1990) Population genetics theory–the past and the future. In: Lessard S (ed) Mathematical and statistical developments of evolutionary theory. Kluwer Academic, Amsterdam, pp 177–227

    Google Scholar 

  • Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Q Rev Biol 57:379–404

    Article  Google Scholar 

  • Figueira WF (2002) Metapopulation dynamics of coral reef fish: understanding habitat, demography, and connectivity in source- sink systems. Ph.D. Dissertation, Duke University, Durham, NC

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon, Oxford

    Google Scholar 

  • Gerber LR, Botsford LW, Hastings A et al (2003) Population models for marine reserve designs: a retrospective and prospective synthesis. Ecol Appl 13:S47–S64

    Article  Google Scholar 

  • Giles BE, Goudet J (1997) A case study of genetic structure in a plant metapopulation. In: Hanski I, Gilpin ME (eds) Metapopulation dynamics: ecology, genetics and evolution. Academic Press, London, pp 429–454

    Google Scholar 

  • Gooch JL (1975) Mechanisms of evolution and population genetics. In: Kinne O (ed) Marine ecology vol II part I. Wiley, London, pp 349–409

    Google Scholar 

  • Griffiths RC, Marjoram P (1996) Ancestral inference from samples of DNA sequences with recombination. J Comput Biol 3:479–502

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RC, Tavare S (1993) Sampling theory for neutral alleles in a varying environment. Proc R Soc Lond B 344:403–410

    Google Scholar 

  • Grosberg RK, Cunningham CW (2001) Genetic structure in the sea: from populations to communities. In: Bertness MD, Gaines S, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, pp 61–84

    Google Scholar 

  • Gruenthal KM, Acheson LK, Burton RS (2007) Genetic structure of natural populations of California red abalone (Haliotis rufescens) using multiple genetic markers. Mar Biol 152:1237–1248

    Article  Google Scholar 

  • Haldane JBS (1932) The causes of natural selection. Longmans Green & Co, London

    Google Scholar 

  • Hanski I (2001) Spatially realistic theory of metapopulation ecology. Naturwissenschaften 88:372–381

    Article  PubMed  CAS  Google Scholar 

  • Hanski I, Simberloff D (1997) The metapopulation approach, its history, conceptual domain, and application to conservation. In: Hanski IA, Gilpin ME (eds) Metapopulation biology. Academic Press, San Diego, pp 5–26

    Chapter  Google Scholar 

  • Hare MP (2001) Prospects for nuclear gene phylogeography. Trends Ecol Evol 16:700–706

    Article  Google Scholar 

  • Hart MW, Marko PB (2010) It’s about time: divergence, demography, and the evolution of developmental modes in marine invertebrates. Integr Comp Biol 50:643–661

    Google Scholar 

  • Hastings A (1993) Complex interactions between dispersal and dynamics: lessons from coupled logistic equations. Ecology 74:1362–1372

    Article  Google Scholar 

  • Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Article  Google Scholar 

  • Hellberg ME (1994) Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans. Evolution 48:1829–1854

    Article  Google Scholar 

  • Hellberg ME (2006) Genetic approaches to understanding marine metapopulation dynamics. In: Kritzer J, Sale PF (eds) Marine metapopulations. Academic Press, San Diego, pp 431–455

    Google Scholar 

  • Hellberg ME (2009) Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol Syst 40:291–310

    Article  Google Scholar 

  • Hellberg ME, Burton RS, Neigel JR et al. (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70(Suppl):273–290

    Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  PubMed  CAS  Google Scholar 

  • Hey J, Nielsen R (2007) Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci USA 104:2785–2790

    Article  PubMed  CAS  Google Scholar 

  • Hickerson MJ, Cunningham CW (2005) Contrasting Quaternary histories in an ecologically divergent sister pair of low-dispersing intertidal fish (Xiphister) revealed by multilocus DNA analysis. Evolution 59:344–360

    PubMed  Google Scholar 

  • Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, Rissler L, Victoriano PF, Yoder AD (2010) Phylgeography’s past, present, and future: 10 years after Avise, 2000. Mol Phylogen Evol 54:291–301

    Article  CAS  Google Scholar 

  • Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting F ST. Nat Rev Genet 10:639–650

    Article  PubMed  CAS  Google Scholar 

  • Horne JB, van Herwerden L, Choat JH et al (2008) High population connectivity across the Indo-Pacific: congruent lack of phylogeographic structure in three reef fish congeners. Mol Phylogenet Evol 49:629–638

    Article  PubMed  Google Scholar 

  • Hudson RR (1983) Properties of a neutral allele model with intragenic recombination. Theor Popul Biol 23:183–201

    Article  PubMed  CAS  Google Scholar 

  • Hurt C, Anker A, Knowlton N (2009) A multilocus test of simultaneous divergence across the Isthmus of Panama using snapping shrimp in the genus Alpheus. Evolution 63:514–530

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291

    Article  Google Scholar 

  • IUCN (2010) Red list of threatened species. Version 2010.2. www.iucnredlist.org, downloaded 20 July 2010

  • James MK, Armsworth PR, Mason LB et al (2002) The structure of reef fish metapopulations: modelling larval dispersal and retention patterns. Proc Biol Sci 269:2079–2086

    Article  PubMed  Google Scholar 

  • Jordan DS (1908) The law of geminate species. Am Nat 1:73–80

    Article  Google Scholar 

  • Kavanagh KD (2000) Larval brooding in the marine damselfish Acanthochromis polyacanthus (Pomacentridae) is correlated with highly divergent morphology, ontogeny and life-history traits. Bull Mar Sci 66:321–337

    Google Scholar 

  • Keever CC, Sunday J, Puritz JB et al (2009) Discordant distribution of populations and genetic variation in a sea star with high dispersal potential. Evolution 63:3214–3227

    Article  PubMed  Google Scholar 

  • Kingman JFC (1982) On the genealogy of large populations. J Appl Probab 19A:27–43

    Article  Google Scholar 

  • Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020

    Article  Google Scholar 

  • Koenig WD, VanVuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517

    Article  PubMed  CAS  Google Scholar 

  • Kritzer JP, Sale PF (2004) Metapopulation ecology in the sea: from Levins’ model to marine ecology and fisheries science. Fish Fisheries 5:131–140

    Article  Google Scholar 

  • Kritzer JP, Sale PF (eds) (2006) Marine metapopulations. Academic Press, New York

    Google Scholar 

  • Krone SM, Neuhauser C (1997) Ancestral processes with selection. Theor Popul Biol 51:210–237

    Article  PubMed  Google Scholar 

  • Kuhner MK (2006) LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770

    Article  PubMed  CAS  Google Scholar 

  • Kuhner MK (2009) Coalescent genealogy samplers: windows into population history. Trends Ecol Evol 24:86–93

    Article  PubMed  Google Scholar 

  • Kuhner MK, Smith LP (2007) Comparing likelihood and Bayesian coalescent estimation of population parameters. Genetics 175:155–165

    Article  PubMed  Google Scholar 

  • Kuhner MK, Yamato J, Felsenstein J (1995) Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling. Genetics 140:1421–1430

    PubMed  CAS  Google Scholar 

  • Kuhner MK, Yamato J, Felsenstein J (1998) Maximum likelihood estimation of population growth rates based on the coalescent. Genetics 149:429–434

    PubMed  CAS  Google Scholar 

  • Larson A, Wake DB, Yanev KP (1984) Measuring gene flow among populations having high levels of genetic fragmentation. Genetics 106:293–308

    PubMed  CAS  Google Scholar 

  • Lessios HA, Robertson DR (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern Pacific barrier. Proc Biol Sci 273:2201–2208

    Article  PubMed  CAS  Google Scholar 

  • Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Sci Am 15:237–240

    Google Scholar 

  • Lipcius RN, Eggleston DB, Schreiber SJ et al (2008) Importance of metapopulation connectivity to restocking and restoration of marine species. Res Fish Sci 16:101–110

    Article  Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  PubMed  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Mallet J (2001) Gene flow. In: Woiwod IP, Reynolds DR, Thomas CD (eds) Insect movement: mechanisms and consequences. CAB International, Wallingford, pp 337–360

    Google Scholar 

  • Marko PB (1998) Historical allopatry and the biogeography of speciation in the prosobranch snail genus Nucella. Evolution 52:757–774

    Article  Google Scholar 

  • Marko PB (2002) Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol Biol Evol 19:2005–2021

    Article  PubMed  CAS  Google Scholar 

  • Marko PB (2004) ‘What’s larvae got to do with it?’ Contrasting patterns of post-glacial population structure in two benthic marine gastropods with identical larval dispersal capabilities. Mol Ecol 13:597–611

    Article  PubMed  CAS  Google Scholar 

  • Marko PB, Moran AL (2009) Out of sight, out of mind: high cryptic diversity obscures the identities and histories of geminate species in the marine bivalve subgenus Acar. J Biogeogr 36:1861–1880

    Article  Google Scholar 

  • Marko PB, Rogers-Bennett L, Dennis A (2007) Population structure and migration of lingcod (Ophiodon elongatus) inferred from mitochondrial DNA: limited dispersal of long-lived pelagic larvae? Mar Biol 150:1301–1311

    Article  CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E, Provine WB (eds) (1998) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge

    Google Scholar 

  • McGovern TM, Keever CA, Hart MW, Saski C, Marko PB (2010) Divergence genetics analysis reveals historical population genetic processes leading to contrasting phylogeographic patterns in co-distributed species. Mol Ecol 19:5043–5060

    Google Scholar 

  • McKechnie SW, Ehrlich PR, White RR (1975) Population genetics of Euphydryas butterflies. I. Genetic variation and the neutrality hypothesis. Genetics 81:571–594

    PubMed  CAS  Google Scholar 

  • Mora C, Sale PF (2002) Are populations of coral reef fish open or closed? Trends Ecol Evol 17:422–428

    Article  Google Scholar 

  • Morgan LE, Shepherd SA (2006) Population and spatial structure of two common temperate reef herbivores: abalone and sea urchins. In: Kritzer JP, Sale PF (eds) Marine metapopulations. Academic Press, New York, pp 205–246

    Google Scholar 

  • Neigel JE (1997) A comparison of alternative strategies for estimating dispersal and gene flow from genetic markers. Annu Rev Ecol Syst 28:105–128

    Article  Google Scholar 

  • Neigel JE (2002) Is F ST obsolete? Conserv Genet 3:167–173

    Article  CAS  Google Scholar 

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158:885–896

    PubMed  CAS  Google Scholar 

  • Ovenden JR, White RW (1990) Mitochondrial and allozyme genetics of incipient speciation in a landlocked population of Galaxias truttaceus (Pisces: Galaxiidae). Genetics 124:701–716

    PubMed  CAS  Google Scholar 

  • Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7:114–118

    Article  PubMed  CAS  Google Scholar 

  • Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572

    Article  Google Scholar 

  • Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13:S146–S158

    Article  Google Scholar 

  • Pannell JR (2003) Coalescence in a metapopulation with recurrent local extinction and recolonization. Evolution 57:949–961

    PubMed  Google Scholar 

  • Pannell JR, Charlesworth B (1999) Neutral genetic diversity in a metapopulation with recurrent local extinction and recolonization. Evolution 53:664–676

    Article  Google Scholar 

  • Pelc RA, Warner RR, Gaines SD (2009) Geographical patterns of genetic structure in marine species with contrasting life histories. J Biogeogr 36:1881–1890

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Provine WB (1971) The origins of theoretical population genetics. University of Chicago Press, Chicago

    Google Scholar 

  • Reece JS, Bowen BW, Joshi K et al (2010) Phylogeography of two moray eels indicates high dispersal throughout the Indo-Pacific. J Hered 101:391–402

    Article  PubMed  CAS  Google Scholar 

  • Roderick GK (1996) Geographic structure of insect populations: gene flow, phylogeography, and their uses. Annu Rev Entomol 41:325–352

    Article  PubMed  CAS  Google Scholar 

  • Sale PF, Hanski IA, Kritzer JP (2006) The merging of metapopulation theory and marine ecology: establishing the historical context. In: Kritzer JP, Sale PF (eds) Marine metapopulations. Academic Press, San Diego, pp 3–28

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349–1368

    Article  Google Scholar 

  • Strasburg JL, Rieseberg LH (2009) How robust are “isolation with migration” analyses to violations of the im model? A simulation study. Mol Biol Evol 27:297–310

    Article  PubMed  CAS  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  CAS  Google Scholar 

  • Tatarenkov A, Healey CI, Avise JC (2010) Microgeographic population structure of green swordail fish: Genetic differentiation despite abundant migration. Mol Ecol 19:257–268

    Article  PubMed  CAS  Google Scholar 

  • Tavare S (1984) Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Popul Biol 26:119–164

    Article  PubMed  CAS  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  PubMed  CAS  Google Scholar 

  • Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140:767–782

    PubMed  CAS  Google Scholar 

  • Wade MJ, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42:995–1005

    Article  Google Scholar 

  • Wagner M (1868) Die Darwin’sche Theorie und das Migrationsgesetz der Organismen. Duncker and Humblot, Leipzig. English edition: The Darwinian theory and the law of the migration of organisms (trans: Laird IL). London

  • Wakeley J (2004) Metapopulations and coalescent theory. In: Hanski IA, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Academic Press, New York, pp 175–198

    Chapter  Google Scholar 

  • Wakeley J (2008) Coalescent theory: an introduction. Roberts and Company Publishers, Greenwood Village

    Google Scholar 

  • Wallace AR (1869) The malay archipelago: the land of the orang-utan, and the bird of paradise. Harper & Brothers, New York

    Google Scholar 

  • Wang Y, Hey J (2010) Estimating divergence parameters with small samples from a large number of loci. Genetics 184:363–379

    Article  PubMed  CAS  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Article  Google Scholar 

  • Waples RS, Gaggiotti OE (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  PubMed  CAS  Google Scholar 

  • Wares JP (2010) Natural distributions of sequence diversity support new null hypotheses. Evolution 64:1136–1142

    Article  PubMed  Google Scholar 

  • Waterson GA (1985) The genetic divergence of two populations. Theor Popul Biol 27:298–317

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whitlock MC (1992) Non-equilibrium population structure in forked fungus beetles: extinction, colonization, and the genetic variance among populations. Am Nat 139:952–970

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Short review: indirect measures of gene flow—F ST does not equal 1/(4Nm + 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    PubMed  CAS  Google Scholar 

  • Yao X, Ye Q, Kang M, Huang H (2007) Microsatellite analysis reveals interpopulation differentiation and gene flow in the endangered tree Changiostyrax dolichocarpa (Styracaceae) with fragmented distribution in central China. New Phytol 176:472–480

    Article  PubMed  Google Scholar 

  • Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2212

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank John Pandolfi and Nancy Budd for an invitation to participate in the publication of this volume. The authors’ research, some of which was presented here, has been primarily supported by grants from the National Science Foundation (NSF OCE-0550526 and OCE-0961996) and from the Natural Sciences and Engineering Research Council (NSERC 2004-203052). Thanks to J. Hey and Amy Lawton-Rauh for extensive discussion and insights into the IMa model. Ron Burton, Jake Kritzer, Haris Lessios, Peter Sale, and two anonymous reviewers read the manuscript and provided numerous useful criticisms and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Marko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marko, P.B., Hart, M.W. Retrospective coalescent methods and the reconstruction of metapopulation histories in the sea. Evol Ecol 26, 291–315 (2012). https://doi.org/10.1007/s10682-011-9467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-011-9467-9

Keywords

Navigation