Skip to main content
Log in

Candidate gene association with summer dormancy in tall fescue

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Two main types of summer dormancy in tall fescue [Schedonorus arundinaceus (Schreb.) Dumort] are recognized, eco-dormancy and endo-dormancy. Endo-dormancy is a physiological response to environmental signals leading to slowing of metabolic activity in meristematic tissues and most likely controlled by circadian clock genes. Therefore, it is genetically inherited and allelic variation among and between summer-dormant and non-dormant varieties is expected. The main objective of this study was to explore the association between dormancy and various candidate genes. Twenty-three genes were amplified and sequenced in two dormant and two non-dormant checks. Nucleotide variants unique to each group were converted to kompetitive allele specific PCR markers and were tested on 52 dormant and non-dormant accessions. Five markers, from the genes CONSTANS and TERMINAL FLOWER showed significant associations (R2 = 0.10 to 0.13, p < 0.05) with field phenotypic scores. These two genes are known to modulate meristem determinacy and growth, suggesting that meristem determinacy is probably one of the mechanisms involved in summer dormancy in tall fescue. Another five markers showed significant associations with the surrogate germination phenotype (R2 = 0.13 to 0.20, p < 0.05). One marker originated from dormancy-associated MADS-box gene sequence, three markers originated from auxin response factors sequences, and one marker was derived from heat shock proteins sequences. These results confirm the implication of photoperiod and temperature in the regulation of summer dormancy. A selection index combining these markers may be valuable for the differentiation between dormant and non-dormant tall fescue genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Avendaño-López A, Sanchez-Gonzales J, Ruiz-Corral J, De La Cruz-Larios L, Santacruz-Rubalcava F, Sanchez Hernandez C, Holland JB (2011) Seed dormancy in Mexican teosinte. Crop Sci 51:2056–2066

  • Barrero JM, Millar AA, Griffiths J, Czechowski T, Scheible WR, Udvardi M, Reid JB, Ross JJ, Jacobsen JV, Gubler F (2010) Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds. Plant J 61(4):611–622

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang YE, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4(3):495–507

    Article  Google Scholar 

  • Blazquez MA, Ferrandiz C, Madueno F, Parcy F (2006) How floral meristems are built. Plant Mol Biol 60(6):855–870

    Article  CAS  PubMed  Google Scholar 

  • Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312(5776):1040–1043

    Article  PubMed  Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996a) Control of inflorescence architecture in Antirrhinum. Nature 379(6568):791–797. doi:10.1038/379791a0

    Article  CAS  PubMed  Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996b) Control of inflorescence architecture in Antirrhinum. Nature 379:791–797

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275(5296):80–83

    Article  CAS  PubMed  Google Scholar 

  • Caicedo AL, Stinchcombe JR, Olsen KM, Schmitt J, Purugganan MD (2004) Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc Natl Acad Sci 101(44):15670–15675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campoy J, Ruiz D, Egea J (2011) Dormancy in temperate fruit trees in a global warming context: a review. Scientia Hort 130(2):357–372

    Article  Google Scholar 

  • Cao S, Ye M, Jiang S (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24(11):683–690

    Article  CAS  PubMed  Google Scholar 

  • Carles C, Bies-Etheve N, Aspart L, Léon-Kloosterziel KM, Koornneef M, Echeverria M, Delseny M (2002) Regulation of Arabidopsis thaliana Em genes: role of ABI5. Plant J 30(3):373–383

    Article  CAS  PubMed  Google Scholar 

  • Chao WS, Serpe MD (2010) Changes in the expression of carbohydrate metabolism genes during three phases of bud dormancy in leafy spurge. Plant Mol Biol 73(1–2):227–239. doi:10.1007/s11103-009-9568-9

    Article  CAS  PubMed  Google Scholar 

  • Chiang GC, Barua D, Kramer EM, Amasino RM, Donohue K (2009) Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. Proc Natl Acad Sci 106(28):11661–11666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer F, Lönnig W-E, Saedler H, Huijser P (2001) The delayed terminal flower phenotype is caused by a conditional mutation in the CENTRORADIALIS gene of snapdragon. Plant Physiol 126(3):1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Silveira Falavigna V, Porto DD, Buffon V, Margis-Pinheiro M, Pasquali G, Revers LF (2014) differential transcriptional profiles of dormancy-related genes in Apple Buds. Plant Mol Biol Rep 32(4):796–813

    Article  Google Scholar 

  • Danilevskaya ON, Meng X, Ananiev EV (2010) Concerted modification of flowering ttime and inflorescence architecture by ectopic expression of TFL1-Like genes in maize. Plant Physiol 153(1):238–251. doi:10.1104/pp.110.154211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lucas M, Davière J-M, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451(7177):480–484

    Article  PubMed  Google Scholar 

  • Dierking R, Azhaguvel P, Kallenbach R, Saha M, Bouton J, Chekhovskiy K, Kopecký D, Hopkins A (2015) Linkage maps of a mediterranean × continental tall fescue population and their comparative analysis with other Poaceae species. Plant Genome. doi:10.3835/plantgenome2014.07.0032

    Google Scholar 

  • Ding R, Missaoui AM (2016) Phenotyping Summer Dormancy in Tall Fescue: establishment of a surrogate phenotype and a dormancy rating system in humid environments. Crop Sci 56:2579–2593. doi:10.2135/cropsci2016.02.0092

    Article  Google Scholar 

  • Grinberg NF, Lovatt A, Hegarty M, Lovatt A, Skøt KP, Kelly R, Blackmore T, Thorogood D, King RD, Armstead I (2016) Implementation of genomic prediction in Lolium perenne (L.) breeding populations. Front Plant Sci 7:133. doi:10.3389/fpls.2016.00133

    Article  PubMed  PubMed Central  Google Scholar 

  • Hand ML, Cogan NO, Stewart AV, Forster JW (2010) Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evol Biol. doi:10.1186/1471-2148-10-303

    PubMed  PubMed Central  Google Scholar 

  • Hopkins AA, Saha MC, Wang ZY (2009) Breeding, genetics, and cultivars. In: Fribourg HA, Hannaway DB, West CP (eds) Tall fescue for the twenty-first century. agronomy monographs. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 339–366. doi:10.2134/agronmonogr53.c19

    Google Scholar 

  • Horvath D (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177(6):523–531. doi:10.1016/j.plantsci.2009.09.002

    Article  CAS  Google Scholar 

  • Horvath DP, Sung S, Kim D, Chao W, Anderson J (2010) Characterization, expression and function of DORMANCY ASSOCIATED MADS-BOX genes from leafy spurge. Plant Mol Biol 73(1–2):169–179

    Article  CAS  PubMed  Google Scholar 

  • Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309(5741):1694–1696

    Article  CAS  PubMed  Google Scholar 

  • Ibanez C, Kozarewa I, Johansson M, Ogren E, Rohde A, Eriksson ME (2010) Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus Trees. Plant Physiol 153(4):1823–1833. doi:10.1104/pp.110.158220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kallida R, Zhouri L, Volaire F, Guerin A, Julier B, Shaimi N, Fakiri M, Barre P (2016) Combining drought survival via summer dormancy and annual biomass productivity in Dactylis glomerata L. Front Plant Sci 7:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286(5446):1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

  • Kim SY, Yu X, Michaels SD (2008) Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality. Plant Physiol 148(1):269–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286(5446):1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Koller D (1969) The physiology of dormancy and survival of plants in desert environments. Symp Soc Exp Biol 23:449–469

    CAS  PubMed  Google Scholar 

  • Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55:521–535

    Article  CAS  PubMed  Google Scholar 

  • Korves TM, Schmid KJ, Caicedo AL, Mays C, Stinchcombe JR, Purugganan MD, Schmitt J (2007) Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field. Am Nat 169(5):E141–E157

    Article  PubMed  Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15(04):281–307

    Article  CAS  Google Scholar 

  • Laude HM (1953) The Nature of Summer Dormancy in Perennial Grasses. Bot Gaz 114(3):284–292. doi:10.1086/335770

    Article  Google Scholar 

  • Lee I, Amasino RM (1995) Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene. Plant Physiol 108(1):157–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinowski DP, Zuo H, Kramp BA, Muir JP, Pinchak WE (2005) Obligatory summer-dormant cool-season perennial grasses for semiarid environments of the southern Great Plains. Agron J 97(1):147–154

    Article  Google Scholar 

  • Michaels SD, Amasino RM (2001) Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13(4):935–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millard P, Neilsen GH (1989) The influence of nitrogen supply on the uptake and remobilization of stored N for the seasonal growth of Apple-trees. Ann Bot-London 63(3):301–309

    Article  Google Scholar 

  • Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng XY, Meilan R, Strauss SH, Brunner AM (2010) Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J. 62(4):674–688. doi:10.1111/j.1365-313X.2010.04185.x

    Article  CAS  PubMed  Google Scholar 

  • Momcilovic I, Ristic Z (2007) Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J Plant Physiol 164(1):90–99

    Article  CAS  PubMed  Google Scholar 

  • M-y Lin, K-h Chai, S-s Ko, L-y Kuang, Lur H-S, Y-y Charng (2014) A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol 164(4):2045–2053

    Article  Google Scholar 

  • Nakamura S, Lynch TJ, Finkelstein RR (2001) Physical interactions between ABA response loci of Arabidopsis. Plant J. 26(6):627–635

    Article  CAS  PubMed  Google Scholar 

  • Norton MR, Lelievre F, Volaire F (2006a) Summer dormancy in Dactylis glomerata L.: the influence of season of sowing and a simulated mid-summer storm on two contrasting cultivars. Aust J Agric Res 57(5):565–575. doi:10.1071/Ar05237

    Article  Google Scholar 

  • Norton MR, Volaire F, Lelievre F (2006b) Summer dormancy in Festuca arundinacea Schreb.; the influence of season of sowing and a simulated mid-summer storm on two contrasting cultivars. Aust J Agric Res 57(12):1267–1277. doi:10.1071/AR06082

    Article  Google Scholar 

  • Norton MR, Lelievre F, Fukai S, Volaire F (2008) Measurement of summer dormancy in temperate perennial pasture grasses. Aust J Agric Res 59(6):498–509. doi:10.1071/Ar07343

    Article  Google Scholar 

  • N-y Liu, S-s Ko, Yeh K-C, Y-y Charng (2006) Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci 170(5):976–985

    Article  Google Scholar 

  • Ofir M, Kigel J (1999) Photothermal control of the imposition of summer dormancy in Poa bulbosa, a perennial grass geophyte. Physiol Plantarum 105(4):633–640. doi:10.1034/j.1399-3054.1999.105406.x

    Article  CAS  Google Scholar 

  • Oliverio KA, Crepy M, Martin-Tryon EL, Milich R, Harmer SL, Putterill J, Yanovsky MJ, Casal JJ (2007) GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock. Plant Physiol 144(1):495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penfield S, Hall A (2009) A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 21(6):1722–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pin PA, Nilsson O (2012) The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell Environ 35(10):1742–1755. doi:10.1111/j.1365-3040.2012.02558.x

    Article  CAS  Google Scholar 

  • Powell LE (1987) Hormonal aspects of bud and seed dormancy in Temperate-Zone woody-plants. Hort Sci. 22(5):845–850

    CAS  Google Scholar 

  • Rees AR (1992) Ornamental bulbs, corms and tubers. CAB International, Wallingford

    Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12(5):217–223. doi:10.1016/j.tplants.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-García L, Madueño F, Wilkinson M, Haughn G, Salinas J, Martínez-Zapater JM (1997) Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 9(11):1921–1934

    Article  PubMed  PubMed Central  Google Scholar 

  • Sablowski R (2007) Flowering and determinacy in Arabidopsis. J Exp Bot 58(5):899–907

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Bai S, Ito A, Sakamoto D, Saito T, Ubi BE, Imai T, Moriguchi T (2013) Expression of genomic structure of the dormancy-associated MADS box genes MADS13 in Japanese pears (Pyrus pyrifolia Nakai) that differ in their chilling requirement for endodormancy release. Tree Physiol 33(6):654–667

    Article  CAS  PubMed  Google Scholar 

  • Salome PA, Xie Q, McClung CR (2008) Circadian timekeeping during early Arabidopsis development. Plant Physiol 147(3):1110–1125. doi:10.1104/pp.108.117622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288(5471):1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiol 157(1):485–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz C, Amasino R (2013) Nitrogen recycling and flowering time in perennial bioenergy crops. Front Plant Sci 4:76. doi:10.3389/fpls.2013.00076

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaimi N, Kallida R, Volaire F, Al Faiz C (2009) Summer dormancy in Orchardgrass: evaluation and characterization through ecophysiological and genetic studies. Crop Sci 49(6):2353–2358. doi:10.2135/cropsci2009.06.0325

    Article  Google Scholar 

  • Shim D, Ko J-H, Kim W-C, Wang Q, Keathley DE, Han K-H (2014) A molecular framework for seasonal growth-dormancy regulation in perennial plants. Hort Res 1:14059. doi:10.1038/hortres.2014.591

    Article  Google Scholar 

  • Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, Dean C (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol 138(2):1163–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suárez-López P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410(6832):1116–1120

    Article  PubMed  Google Scholar 

  • Sun A-Q, Yi S-Y, Yang J-Y, Zhao C-M, Liu J (2006) Identification and characterization of a heat-inducible ftsH gene from tomato (Lycopersicon esculentum Mill.). Plant Sci 170(3):551–562

    Article  CAS  Google Scholar 

  • Thomas B, Vince-Prue D (1996) Photoperiodism in plants. Academic Press, New York

    Google Scholar 

  • Tian ZX, Wang XB, Lee R, Li YH, Specht JE, Nelson RL, McClean PE, Qiu LJ, Ma JX (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA 107:8563–8568

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115–e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303(5660):1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Vegis A (1964) Dormancy in Higher Plants. Ann Rev Plant Physio 15:185. doi:10.1146/annurev.pp.15.060164.001153

    Article  CAS  Google Scholar 

  • Volaire F, Norton M (2006) Summer dormancy in perennial temperate grasses. Ann Bot-London 98(5):927–933. doi:10.1093/Aob/Mcl195

    Article  Google Scholar 

  • Volaire F, Conejero G, Lelievre F (2001) Drought survival and dehydration tolerance in Dactylis glomerata and Poa bulbosa. Aust J Plant Physiol 28(8):743–754

    Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138(4):2299–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanovsky MJ, Kay SA (2002) Molecular basis of seasonal time measurement in Arabidopsis. Nature 419(6904):308–312

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by funds from the University of Georgia Research Foundation cultivar development and research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Missaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, R., Missaoui, A.M. Candidate gene association with summer dormancy in tall fescue. Euphytica 213, 58 (2017). https://doi.org/10.1007/s10681-016-1810-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-016-1810-3

Keywords

Navigation