Skip to main content
Log in

Identification of QTLs with additive, epistatic, and QTL × environment interaction effects for the bolting trait in Brassica rapa L.

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Bolting is an important agronomic trait in Brassica rapa crops due to its effect on yield and quality. Bolting is a complicated trait regulated by multiple genes that is highly influenced by the environment. Defining the chromosomal region(s) involved and clarifying the genetic interactions is important for improving the effectiveness of marker-assisted selection. Our objectives were to map quantitative trait loci (QTLs) controlling bolting in B. rapa and to study epistasis and QTL × environment interactions. A recombinant inbred line population (RILs, F2:6) derived from a cross between late—(08A061) and early bolting (09A001) lines was used to determine the genetic basis for three bolting indices; bolting index (BI), days to 5-cm-high elongated floral stalk (DE), and flowering time (FT) in four environments (E1–E4). Twenty-three additive QTLs were identified for BI, DE, and FT using single environment phenotypic scores. Phenotypic variation explained by each additive QTL and the total variation ranged from 5.90–33.15 %, and from 19.54–54.87 %, respectively. Eight additive QTLs and six pairs of epistatic QTLs were detected across the four environments. Phenotypic variation explained by the additive and epistatic QTLs ranged from 1.46–17.39 % and 0.70–4.73 %, respectively. Three of eight additive QTLs and zero of six pairs of epistatic QTLs showed environmental interactions. Phenotypic variation explained by each additive QTL × environment ranged from 0.88–2.15 %. Our results will contribute to an understanding of the genetic control of bolting in B. rapa, and enable breeders to determine the appropriate selection strategy with respect to bolting in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajisaka H, Kuginuki Y, Yui S, Enomoto S, Hirai M (2001) Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica campestris L. ssp. pekinensis syn. Rapa L.) using bulked segregant analysis. Euphytica 118:75–81

    Article  CAS  Google Scholar 

  • Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  CAS  PubMed  Google Scholar 

  • Chapman NH, Bonnet J, Grivet L, Lynn J, Graham N, Smith R, Sun GP, Walley PG, Poole M, Causse M, King GJ, Baxter C, Seymour GB (2012) High-resolution mapping of a fruit firmness-related quantitative trait locus in tomato reveals epistatic interaction associated with a complex combination locus. Plant Physiol 159:1644–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dechaine JMD, Brock MT, Weinig C (2014) QTL architecture of reproductive fitness characters in Brassica rapa. BMC Plant Biol 14:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding JQ, Wang XM, Subhash C, Yan JB, Li JS (2008) QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed 22:395–403

    Article  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominace. Genetics 141:333–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elers B, Wiebe HJ (1984) Flower formation of Chinese cabbage I. Response to vernalization and photoperiods. Scientia Hortic 22:219–231

    Article  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ha BK, Kim HK, Kang ST (2012) Mapping QTLs with epistatic effects and QTL-by-environment interactions for seed coat cracking in soybeans. Euphytica 186:933–942

    Article  CAS  Google Scholar 

  • Kakizaki T, Kato T, Fukino N, Ishida M, Hatakeyama K, Matsumoto S (2011) Identification of quantitative trait loci controlling late bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6 gou. Breed Sci 61:151–159

    Article  Google Scholar 

  • Kitamoto N, Yui S, Nishikswa K, Takahata Y, Yokoi S (2014) A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting. Euphytica 196:213–223

    Article  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Ku LX, Sun ZH, Wang CL, Zhang J, Zhao RF, Liu HY, Tai GQ, Chen YH (2012) QTL mapping and epistasis analysis of brace root traits in maize. Mol Breed 23:395–403

    Google Scholar 

  • Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XN, Wang WK, Wang Z, Li KN, Lim YP, Piao ZY (2015) Construction of chromosome segment substitution lines enables QTL mapping for flowering and morphological traits in Brassica rapa. Front Plant Sci 6:432

    PubMed  PubMed Central  Google Scholar 

  • Liu GF, Zhu HT, Zhang GQ, Li LH, Ye GY (2012) Dynamic analysis of QTLs on tiller number in rice (Oryza sativa L.) with single segment substitution lines. Theor Appl Genet 125:143–153

    Article  PubMed  Google Scholar 

  • Lou P, Zhao JJ, Kim JS, Shen SX, Carpio DP, Song XF, Jin M, Vreugdenhil D, Wang XW, Koornneer M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016

    Article  CAS  PubMed  Google Scholar 

  • Lou P, Xie Q, Xu X, Edwards CE, Brock MT, Weinig C, McClung CR (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet 123:397–409

    Article  CAS  PubMed  Google Scholar 

  • Luo YX, Luo CY, Du DZ, Fu Z, Yao YM, Xu CC, Zhang HS (2014) Quantitative trait analysis of flowering time in spring rapeseed (B. napus L.). Euphytica 200(3):321–335

    Article  Google Scholar 

  • McCouch SR, CGSNL (2008) Gene nomenclature system for rice. Rice 1:72–84

    Article  Google Scholar 

  • Mero CE, Honma S (1985) Inheritance of bolting resistance in an intraspecific Chinese cabbage × turnip cross. HortScience 20:881–882

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka M, Tamura K, Hayashi M, Fujimori Y, Ohkawa Y, Kuginuki Y, Harada K (2005) Mapping of QTL for bolting time in Brassica rapa (syn.campestris) under different environmental conditions. Breed Sci 55:127–133

    Article  CAS  Google Scholar 

  • Osborn TC, Kole C, Parkin IAP, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schranz ME, Quijada P, Sung SB, Lukens L, Amasino R, Osborn TC (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teutonico RA, Osborn TC (1995) Mapping loci controlling vernalization requirement in Brassica rapa. Theor Appl Genet 91:1279–1283

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4.0: Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statics. North Carolina State University, Raleith

    Google Scholar 

  • Wang ZF, Cheng JP, Chen ZW, Huang J, Bao YM, Wang JF, Zhang HS (2012) Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor Appl Genet 125(4):807–815

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Cheng JP, Lai YY, Du WL, Huang X, Wang ZF, Zhang HS (2014a) Identification of QTLs with additive, epistatic and QTL × development interaction effects for seed dormancy in rice. Planta 239:411–420

    Article  CAS  PubMed  Google Scholar 

  • Wang YG, Zhang L, Ji XH, Yan JF, Lv XX, Liu YT, Feng H (2014b) Mapping of quantitative trait loci for the bolting trait in Brassica rapa under vernalizing conditions. Genet Mol Res 13:3927–3939

    Article  CAS  PubMed  Google Scholar 

  • Wang ML, Khera P, Pandey MK, Wang H, Qiao LX, Feng SP, Tonnis B, Barkley NA, Pinnow D, Holbrook CC, Culbreath AK, Varshney RK, Guo B (2015a) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS One 10(4):e0119454

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Han YH, Zhao X, Li YG, Teng WL, Li DM, Zhan Y, Li WB (2015b) Mapping isoflavone QTL with main, epistatic and QTL × environment effects in recombinant inbred lines of soybean. PLoS One 10(3):e0118447

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Wei KY, Cheng F, Li SK, Wang Q, Zhao JJ, Bonnema G, Wang XW (2012) A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biol 12:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Würschum T, Maurer HP, Dreyer F, Reif JC (2013) Effect of inter- and- intragenic epistasis on the heritability of oil content in rapeseed (Brassica napus L.). Theor Appl Genet 126(2):435–441

    Article  PubMed  Google Scholar 

  • Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DPD, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, Bonnema G (2013) The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J Exp Bot 64(14):4503–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu YB, Crouch JH (2008) Marker-assisted selection in plant breeding: from publication to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xu YF, An DG, Liu DC, Zhang AM, Xu HX, Li B (2012) Mapping QTLs with epistatic effects and QTL × treatment interactions for salt tolerance at seedling stage of wheat. Euphytica 186:233–245

    Article  Google Scholar 

  • Xu P, Wu XH, Wang BG, Hu TT, Lu ZF, Liu YH, Qin DH, Wang S, Li GJ (2013) QTL mapping and epistatic interaction analysis in asparagus bean for several characterized and novel horticulturally important traits. BMC Genet 14:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Yu YJ, Zhang FL, Zou ZR, Zhao XY, Zhang DS, Xu JB (2007) Linkage map construction and quantitative trait loci analysis for bolting based on a double haploid population of Brassica rapa. J Integr Plant Biol 49:664–671

    Article  CAS  Google Scholar 

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang QF, Saghai Maroof MA (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Nat Acad Sci 94:9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JJ, Kulkarni V, Liu NN, Carpio DPD, Bucher J, Bonnema G (2010) BrFLC2 (Flowering Locus C) as a candidate gene for a vernalization response QTL in Brassica rapa. J Exp Bot 61(6):1817–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (NSFC, Grant No. 30900981), and the Provincial Natural Science Foundation of Liaoning, China (Grant No. 2014027006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugang Wang.

Additional information

Yating Liu and Chengyu Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, C., Shi, X. et al. Identification of QTLs with additive, epistatic, and QTL × environment interaction effects for the bolting trait in Brassica rapa L.. Euphytica 210, 427–439 (2016). https://doi.org/10.1007/s10681-016-1710-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1710-6

Keywords

Navigation