Skip to main content
Log in

Characterization of a new male sterility source identified in an invasive biotype of Helianthus annuus (L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Male sterile (MS) plants fail to produce functional anthers, pollen, or male gametes. This condition is useful in sunflower hybrid seed production. A MS form identified in an invasive population of H. annuus located in Las Malvinas was characterized by 37 morphological variables, six mitochondrial genes (atpA, atp6, coxIII, orfb, orfB and orfC) associated with cytoplasmic male sterility (CMS), five SSR loci associated with ms9, ms10, and ms11 nuclear male sterility genes, and the HRGO2 marker associated with the Rf1 fertility restoration gene for CMS-PET1. Restoration of MS condition was evaluated through crosses with 13 sunflower inbred lines. Las Malvinas site was described regarding its population size, spatial distribution, and male sterility occurrence. Ten years after the first observation, population size was over 250,000 individuals. The adoption of this species as ornamental plant in home gardens has contributed its expansion. The low frequency of MS plants found in natural conditions (0.4 %) is concordant with a CMS form in combination with restoration genes. Wild individuals harboring the CMS-PET1 cytoplasm and individuals carrying a different mitochondrial genome were found. The Rf1 restorer gene for CMS-PET1 was not detected. The new type of male sterility was different than CMS-PET1 in pollen morphology; absence of orfC; and different response to crosses with inbred lines. Molecular differences were found with CMS-RES1 and CMS-MAX1. The male sterility could not be explained by differences in the cytoplasmic or nuclear regions studied. The new MS form will expand the genetic diversity available for commercial hybrid sunflower production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aarts MGM (1995) Molecular characterization of the CER1 gene of Arabidopsis involved in epicutilar wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alexander P (1969) Differential staining of aborted and non-aborted pollen. Stain Technol 44:117–122

    CAS  PubMed  Google Scholar 

  • Ardila F, Echeverría MM, Ríos R, Rodríguez RH (2010) Structural features of a cytoplasmic male sterility source from Helianthus resinosus, CMS RES1. J Plant Breed Crop Sci 2:168–172

    CAS  Google Scholar 

  • Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. Comptes Rendus de l’Académie des Sciences Series III Sciences de la Vie 324:543–550

    CAS  Google Scholar 

  • Burke JM, Gardner KA, Rieseberg LH (2002) The potential for gene flow between cultivated and wild sunflower (Helianthus annuus) in the United States. Am J Bot 89:1550–1552

    Article  PubMed  Google Scholar 

  • Cantamutto M, Poverene M, Peinemann N (2008) Multi-scale analysis of two annual Helianthus species naturalization in Argentina. Agric Ecosyst Environ 123:69–74

    Article  Google Scholar 

  • Cantamutto M, Poverene M, Presotto A, Alvarez D, Lenardon S, Rodríguez R, Martín Sánchez J, Fernández Moroni I, Giolitti F, Garayalde A, Haucke A, Bellido A, Fraysse M (2010a) The Argentine wild Helianthus annuus L. genetic resource. Helia 33:47–62

    Article  Google Scholar 

  • Cantamutto M, Torres L, Presotto A, Gutiérrez A, Ureta S, Poverene M (2010b) Migration pattern suggested by terrestrial proximity as possible origin of wild annual Helianthus populations in central Argentina. Biol Invasions 12:541–551

    Article  Google Scholar 

  • Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  • Chen JF, Hu JG, Vick BA, Jan CC (2006) Molecular mapping of a nuclear male-sterility gene in sunflower (Helianthus annuus L.) using TRAP and SSR markers. Theor Appl Genet 113:122–127

    Article  CAS  PubMed  Google Scholar 

  • Delph LF, Touzet P, Bailey MF (2007) Merging theory and mechanism in studies of gynodioecy. Trends Ecol Evol 22:17–24

    Article  PubMed  Google Scholar 

  • Dewey RE, Levings CS III, Timothy DH (1986) Novel recombination in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44:439–449

    Article  CAS  PubMed  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat. Versión 2008. Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar. Accessed 29 May 2014

  • Echeverria MM, Salaberry MT, Rodriguez RH (2003) Characterization for agronomic use of cytoplasmic male-sterility in sunflower (Helianthus annuus L.) introduced from H-resinosus Small. Plant Breed 122:357–361

    Article  Google Scholar 

  • Garayalde AF, Poverene M, Cantamutto M, Carrera A (2011) Wild sunflower diversity in Argentina revealed by ISSR and SSR markers: an approach for conservation and breeding programs. Ann Appl Biol 158:305–317

    Article  CAS  Google Scholar 

  • Glover J, Grelon M, Craig S, Chaudury A, Dennis L (1998) Cloning and characterization of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J 15:345–356

    Article  CAS  PubMed  Google Scholar 

  • Gutierres S, Sabar M, Lelandais G, Chetrit P, Diolez P, Degand H, Boutry M, Vedel F, de Kouchkovsky Y, DePaepe R (1997) Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants. Proc Natl Acad Sci USA 94:3436–3441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gutierrez A, Carrera A, Basualdo J, Rodríguez R, Cantamutto M, Poverene M (2010) Gene flow between cultivated sunflower and Helianthus petiolaris (Asteraceae). Euphytica 172:67–76

    Article  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heiser CB (1954) Variation and subspeciation in the common sunflower, Helianthus annuus. Am Midl Nat 51:287–305

    Article  Google Scholar 

  • Hoisington D, Khairallah M, de León DG (1994) Laboratory protocols, 2nd edn. Applied Molecular Genetics Laboratory, CIMMYT, México

    Google Scholar 

  • Horn R, Köhler RH, Zetsche K (1991) A mitochondrial 16-kDa protein is associated with cytoplasmic male sterility in sunflower. Plant Mol Biol 7:29–36

    Article  Google Scholar 

  • Horn R, Hustedt JEG, Horstmeyer A, Hahnen J, Zetsche K, Friedt W (1996) The CMS-associated 16 kDa protein encoded by orfH522 in the PET1 cytoplasm is also present in other male-sterile cytoplasms of sunflower. Plant Mol Biol 30:523–538

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Kusterer B, Lazarescu E, Prufe M, Friedt W (2003) Molecular mapping of the Rf1 gene restoring pollen fertility in PET1-based F1 hybrids in sunflower (Helianthus annuus L.). Theor Appl Genet 106:599–606

    CAS  PubMed  Google Scholar 

  • Jan CC (1992) Inheritance and allelism of mitomycin C- and streptomycin- induced recessive genes for male sterility in cultivated sunflower. Crop Sci 32:317–320

    Article  Google Scholar 

  • Jan CC (2000) Cytoplasmic male sterility in two wild Helianthus annuus L. accessions and their fertility restoration. Crop Sci 40:1535–1538

    Article  Google Scholar 

  • Jan CC, Rutger JN (1988) Mitomycin C- and streptomycin-induced male sterility in cultivated sunflower. Crop Sci 28:792–795

    Article  CAS  Google Scholar 

  • Jan CC, Seiler GJ (2007) Sunflower. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement: oilseed crops, vol 4. CRC, New York, pp 103–165

    Google Scholar 

  • Jan CC, Vick BA (2006) Registration of seven cytoplasmic male-sterile and four fertility restoration sunflower germplasms. Crop Sci 46:1829–1830

    Article  Google Scholar 

  • Kaul ML (1988) Male sterility in higher plants. Springer, Berlin

    Book  Google Scholar 

  • Kinman ML (1970) Letter to Participants. In: Proceedings of the 4th international sunflower conference, Memphis, USA, pp 181–183

  • Kohler RH, Lossl A, Zetsche K (1990) Nucleotide sequence of the F1-ATPase alpha subunit gene of sunflower mitochondria. Nucleic Acids Res 18:4588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kohler RH, Horn R, Lössl A, Zetsche K (1991) Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with the atpA gene. Mol Gen Genet 227:369–376

    Article  CAS  PubMed  Google Scholar 

  • Korban S, Vodkin L, Liu L, Gasic K, Gonzales O, Hernandez A, Aldwinckle H, Malnoy M, Carroll N, Goldsbrough P, Orvis K, Clifton S, Pape D, Marra M, Hillier L, Martin J, Wylie T, Dante M, Theising B, Bowers Y, Gibbons M, Ritter E, Ronko I, Tsagareishvili R, Kennedy S, Waterston R, Wilson R (2004) Apple functional genomics grant—NSF 0321702. Unpublished. GenBank Acc:DR992198

  • Korell M, Mösges G, Friedt W (1992) Construction of a sunflower pedigree map. Helia 15:7–16

    Google Scholar 

  • Laver HK, Reynolds SJ, Moneger F, Leaver CJ (1991) Mitochondrial genome organization and expression associated with cytoplasmic male sterility in sunflower (Helianthus annuus). Plant J 1:185–193

    Article  CAS  PubMed  Google Scholar 

  • Leclercq P (1969) Cytoplasmic male sterility in sunflower. Ann Amelior Plant 19:99–106

    Google Scholar 

  • Leclercq P (1971) La stérilité mâle cytoplasmique du tournesol 1. Premières études sur la restauration de la fertilité. Ann Amelior Plant 21:45–54

    Google Scholar 

  • Lee SJ, Warmke HE (1979) Organelle size and number in fertile and T-cytoplasmic male-sterile corn. Am J Bot 66:141–148

    Article  Google Scholar 

  • Linder CR, Taha I, Rieseberg LH, Seiler GJ, Snow AA (1998) Long-term introgression of crop genes into wild sunflower populations. Theor Appl Genet 96:339–347

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cui P, Zhan K, Lin Q, Zhuo G, Guo X, Ding F, Yang W, Liu D, Hu S, Yu J, Zhang A (2011) Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line. BMC Genom 12:163

    Article  CAS  Google Scholar 

  • Mansilla R, López C, Flores M, Espejo R (2010) Estudios de la biología reproductiva en cinco accesiones de Smallanthus sonchifolius (Poepp. & Endl.) Robinson. Ecología Aplicada 9:167–175

    Google Scholar 

  • Marinkovic R, Miller JF (1995) A new cytoplasmic male sterility source from wild Helianthus annuus. Euphytica 82:39–42

    Article  Google Scholar 

  • Mercer KL, Emry DJ, Snow AA, Kost MA, Pace BA, Alexander HM (2014) Fitness of crop-wild hybrid sunflower under competitive conditions: implications for crop-to-wild introgression. PLoS ONE. doi:10.1371/journal.pone.0109001

    Google Scholar 

  • Miller JF, Fick GN (1997) The genetics of sunflower. In: Schneiter AA (ed) Sunflower technology and production. ASA, CSSA, and SSSA, Madison, pp 441–495

    Google Scholar 

  • Moffatt BA, Sommerville CR (1988) Positive selection for male-sterile mutants of Arabidopsis thaliana lacking adenine phosphoribosyl transferase activity. Plant Physiol 86:1150–1154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Monéger F, Smart CJ, Leaver CJ (1994) Nuclear restoration of cytoplasmic male sterility in sunflower is associated with tissue-specific regulation of a novel mitochondrial gene. EMBO J 13:8–17

    PubMed Central  PubMed  Google Scholar 

  • Pérez-Vich B, Berry ST, Velasco L, Fernandez-Martinez JM, Gandhi S, Freeman C, Heesacker A, Knapp SJ, Leon AJ (2005) Molecular mapping of nuclear male sterility genes in sunflower. Crop Sci 45:1851–1857

    Article  Google Scholar 

  • Poverene M, Cantamutto M, Carrera A, Ureta S, Alvarez D, Alonso Roldán V, Presotto A, Gutiérrez A, Luis S, Hernández A (2006) Wild sunflower research in Argentina. Helia 29:65–76

    Article  Google Scholar 

  • Poverene M, Cantamutto M, Seiler GJ (2008) Ecological characterization of wild Helianthus annuus and H. petiolaris germplasm in Argentina. Plant Genet Resour 7:42–49

    Article  Google Scholar 

  • Presotto A, Cantamutto M, Poverene M, Seiler G (2009) Phenotypic diversity in wild Helianthus annuus from Argentina. Helia 32:37–49

    Article  Google Scholar 

  • Presotto A, Poverene M, Cantamutto M (2014) Seed dormancy and hybridization effect of the invasive species, Helianthus annuus. Ann Appl Biol 164:373–383

    Article  Google Scholar 

  • Quagliariello C, Saiardi A, Gallerani R (1990) The cytochrome oxidase subunit III gene in sunflower mitochondria is cotranscribed with an open reading frame conserved in higher plants. Curr Genet 18:355–363

    Article  CAS  PubMed  Google Scholar 

  • Reagon M, Snow AA (2006) Cultivated Helianthus annuus (Asteraceae) volunteers as a genetic “bridge” to weedy sunflower populations in North America. Am J Bot 93:127–133

    Article  Google Scholar 

  • Rieseberg LH, Blackman BK (2010) Speciation genes in plants. Ann Bot 106:439–455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rieseberg LH, Van Fossen C, Arias D, Carter RL (1994) Cytoplasmic male sterility in sunflower: origin, inheritance, and frequency in natural populations. J Heredity 85:233–238

    CAS  Google Scholar 

  • Schnable P, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Article  Google Scholar 

  • Seiler GJ, Jan CC (1994) New fertility restoration genes from wild sunflowers for sunflower PET1 male-sterile cytoplasm. Crop Sci 34:1526–1528

    Article  Google Scholar 

  • Serieys H (1996) Identification, study and utilization in breeding programs of new CMS sources. Helia 19(special issue):144–157

    Google Scholar 

  • Serieys H (1999a) Progress report on the 1996–99 activities of the FAO working group: identification, study and utilization in breeding programs of new CMS sources. FAO technical meeting on sunflower. In: Proceedings of the IX FAO consultation on sunflower subnetwork, Dobrich, Bulgaria, FAO, Rome, Italy

  • Serieys H (1999b) Progress report on the 1997–98 activities of the FAO working group: evaluation of wild helianthus species. Dobrich, Bulgaria

  • Serieys H (2001) Progress report on the 1999–2000 activities of the FAO working group: evaluation of wild helianthus species. European cooperative research network on sunflower. Udine, Italy

  • Serieys H, Vincourt P (1987) Characterization of some new cytoplasmic male sterility sources from the Helianthus genus. Helia 10:9–13

    Google Scholar 

  • Siculella L, Palmer JD (1988) Physical and gene organization of mitochondrial DNA in fertile and male-sterile sunflower. Nucleic Acids Res 16:3787–3799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snow AA, Moran-Palma P, Rieseberg LH, Wszelaki A, Seiler GJ (1998) Fecundity, phenology, and seed dormancy of F1 wild-crop hybrids in sunflower (Helianthus annuus, Asteraceae). Am J Bot 85:794–801. doi:10.2307/2446414

    Article  CAS  PubMed  Google Scholar 

  • Spassova M, Christov M, Bohorova N, Petrov P, Dudov K, Atanassov A, Nijkamp HJJ, Hille J (1992) Molecular analysis of a new cytoplasmic male sterile genotype in sunflower. FEBS Lett 297:159–163

    Article  CAS  PubMed  Google Scholar 

  • Spassova M, Moneger F, Leaver CJ, Petrov P, Atanassov A, Nijkam HJ, Hille J (1994) Characterization and expression of the mitochondrial genome of a new type of cytoplasmic male-sterile sunflower. Plant Mol Biol 26:1819–1831

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet 107:6–19

    CAS  PubMed  Google Scholar 

  • Ureta MS, Carrera A, Cantamutto MA, Poverene MM (2008a) Gene flow among wild and cultivated sunflower, Helianthus annuus in Argentina. Agric Ecosyst Environ 123:343–349

    Article  Google Scholar 

  • Ureta S, Cantamutto M, Carrera A, Delucchi C, Poverene M (2008b) Natural hybrids between wild and cultivated sunflower. Genet Resour Crop Evol 55:1267–1277

    Article  Google Scholar 

  • Van der Meer IM, Stam ME, Van Tunen AJ, Mol JN, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in Petunia anthers results in male sterility. Plant Cell 4:253–262

    Article  PubMed Central  PubMed  Google Scholar 

  • Vear F (2010) Classic genetics and breeding. In: Hu J, Seiler G, Kole C (eds) Genetics, genomics and breeding of sunflower. Science, Enfield, pp 51–77

    Chapter  Google Scholar 

  • Vranceanu V (1970) Advances in sunflower breeding in Romania. In: Proceedings of the 4th international sunflower conference. International Sunflower Association, Memphis, pp 136–148

    Google Scholar 

  • Vranceanu AV (1977) El girasol. Traductor Guerrero A. Mundi Prensa, Madrid, pp 131–139

    Google Scholar 

  • Warwick SI, Stewart CN Jr (2005) Crops come from wild plants: how domestication, transgenes, and linkage together shape ferality. In: Gressel J (ed) Crop ferality and volunteerism. CRC, Boca-Raton, pp 9–30

    Google Scholar 

  • Watson JD, Gilman M, Witkowski J, Zoller M (1992) Recombinant DNA, 2nd edn. Scientific American Books, New York, pp 557–559

    Google Scholar 

  • Whitton J, Wolf DE, Arias DM, Snow AA, Rieseberg LH (1997) The persistence of cultivar alleles in wild populations of sunflowers five generations after hybridization. Theor Appl Genet 95:33–40. doi:10.1007/s001220050529

    Article  Google Scholar 

  • Young EG, Hanson MR (1987) A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 50:41–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the National Research Council of Argentina (CONICET) for a fellowship to A.F.G. We also thank D. Alvarez and R. H. Rodriguez for their contribution in the inbred line collection used in this work. Financial support was provided by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT, PICT 2286).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio F. Garayalde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garayalde, A.F., Presotto, A., Carrera, A. et al. Characterization of a new male sterility source identified in an invasive biotype of Helianthus annuus (L.). Euphytica 206, 579–595 (2015). https://doi.org/10.1007/s10681-015-1456-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1456-6

Keywords

Navigation