Skip to main content
Log in

Cytological and molecular characterization of wheat-Hordeum chilense chromosome 7Hch introgression lines

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Chromosome 7Hch of Hordeum chilense carries the Phytoene synthase 1 (Psy1) gene encoding the first step in the carotenoid biosynthetic pathway. As such it can be used in the improvement of seed carotenoid content in wheat. Four introgressions of chromosome 7Hch into wheat have been characterized by in situ hybridization of labeled DNA probes and by several sets of DNA markers. Chromosome-specific SSR were used for the identification of wheat chromosomes. Besides 113 conserved orthologous set (COS) markers were tested for homoeologous group 7, of which 97 amplified in H. chilense and 32 were polymorphic between H. chilense and wheat, and 28 expressed sequence tag (EST) barley markers previously allocated to chromosome 7. A total of 60 markers (32 COS and 28 EST) were allocated to chromosome 7Hch with 28 assigned to 7HchS and 22 to 7HchL. A combination of in situ probing and marker genotyping have shown that among the four introgressions there was a substitution line 7Hch (7D), a ditelosomic addition line for the long arm of 7Hch and two homozygous centric translocations 7HchS·2DS and 7HchS·5AL. The Psy1 gene was localized on the short arm of 7Hch. The positions of markers from the international barley consortium map (IBSC2012) were determined and the comparative arm location between H. chilense and H. vulgare is discussed. The genetic stocks characterized here include new wheat-H. chilense recombinations useful for genetic studies and with a potential for breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad FT, Asenstorfer RE, Soriano IR, Mares DJ (2013) Effect of temperature on lutein esterification and lutein stability in wheat grain. J Cereal Sci 58:408–413

    Article  CAS  Google Scholar 

  • Atienza SG, Avila CM, Martin A (2007a) The development of a PCR-based marker for Psy1 from Hordeum chilense, a candidate gene for carotenoid content accumulation in tritordeum seeds. Aust J Agric Res 58:767–773

    Article  CAS  Google Scholar 

  • Atienza SG, Ballesteros J, Martin A, Hornero-Mendez D (2007b) Genetic variability of carotenoid concentration and degree of esterification among tritordeum (×Tritordeum Ascherson et Graebner) and durum wheat accessions. J Agric Food Chem 55:4244–4251

    Article  CAS  PubMed  Google Scholar 

  • Atienza SG, Martín AC, Martín A (2007c) Introgression of wheat chromosome 2D or 5D into tritordeum leads to free-threshing habit. Genome 50:994–1000

    Article  CAS  PubMed  Google Scholar 

  • Bothmer R, Jacobsen N, Baden C, Jorgensen RB, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum. Systematic and ecogeographics studies on crop genepools, International Plant Genetic Resources Institute, Rome

  • Cabrera A, Friebe B, Jiang J, Gill BS (1995) Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome 38:435–442

    Article  CAS  PubMed  Google Scholar 

  • Cabrera A, Martin A, Barro F (2002) In-situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum. Chromosome Res 10:49–54

    Article  CAS  PubMed  Google Scholar 

  • Calderón MC, Ramírez MC, Martín A, Prieto P (2012) Development of Hordeum chilense 4Hch introgression lines in durum wheat: a tool for breeders and complex trait analysis. Plant Breed 131:733–738. doi:10.1111/j.1439-0523.2012.02010.x

    Article  Google Scholar 

  • Cantalapiedra CP, Boudiar R, Casas AM, Igartua E, Contreras-Moreira B (2014) BARLEYMAP: physical and genetic mapping of nucleotide sequences and annotation of surrounding loci in barley. Mol Breed (in press)

  • Castillo A, Atienza SG, Martín AC (2014) Fertility of CMS wheat is restored by two Rf loci located on a recombined acrocentric chromosome. J Exp Bot. doi: 10.1093/jxb/eru388

  • Castro AM, Martin A, Martin LM (1996) Location of genes controlling resistance to greenbug (Schizaphis Graminum Rond.) in Hordeum chilense. Plant Breed 115:335–338

    Article  Google Scholar 

  • Ceoloni C, Kuzmanović L, Forte P, Gennaro A, Bitti A (2014) Targeted exploitation of gene pools of alien Triticeae species for sustainable and multi-faceted improvement of the durum wheat crop. Crop Pasture Sci 65:96–111

    Google Scholar 

  • Cherif-Mouaki S, Said M, Alvarez JB, Cabrera A (2011) Sub-arm location of prolamin and EST-SSR loci on chromosome 1Hch from Hordeum chilense. Euphytica 178:63–69

    Article  CAS  Google Scholar 

  • Cifuentes Z, Said M, Cabrera A (2005) Terminal deletions in Hordeum chilense induced by gametocidal activity of chromosome 2C from Aegilops cylindrica. Chromosome Res 13(Suppl 1):146

    Google Scholar 

  • Endo TR (1988) Induction of chromosomal structural changes by a chromosome of Aegilops cylindrica L. in common wheat. Hereditas 79:366–370

    Google Scholar 

  • Endo TR (2009) Cytological dissection of barley genome by the gametocidal system. Breed Sci 59:481–486

    Article  Google Scholar 

  • Ficco DBM, Mastrangelo AM, Trono D, Borrelli GM, De Vita P, Fares C, Beleggia R, Platani C, Papa R (2014) The colours of durum wheat: a review. Crop Pasture Sci 65:1–15. doi:http://dx.doi.org/10.1071/CP13293

  • Friebe B, Kynast RG, Gill BS (2000) Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat. Chromosome Res 8:501–511

    Article  CAS  PubMed  Google Scholar 

  • Forster BP, Philips MS, Miller TE, Baird E, Powell W (1990) Chromosome location of genes ontrolling tolerance to salt (NaCl) and vigour in Hordeum vulgare and H. chilense. Heredity 65:99–107

    Article  Google Scholar 

  • Hagras AA, Kishii M, Sato K, Tanaka H, Tsujimoto H (2005a) Extended application of barley EST markers for the analysis of alien chromosomes added to wheat genetic background. Breed Sci 55:335–341

    Article  CAS  Google Scholar 

  • Hagras AA, Kishii M, Tanaka H, Sato K, Tsujimoto H (2005b) Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences. Genes Genet Syst 80:147–159

    Article  PubMed  Google Scholar 

  • Hernandez P (2005) Comparison among available marker systems for cereal introgression breeding: a practical perspective. Euphytica 146:95–100

    Article  CAS  Google Scholar 

  • Hernandez P, Laurie DA, Martin A, Snape JW (2002) Utility of barley and wheat simple sequence repeat (SSR) markers for genetic analysis of Hordeum chilense and tritordeum. Theor Appl Genet 104:735–739

    Article  CAS  PubMed  Google Scholar 

  • Khlestkina E (2014) Current applications of wheat and wheat–alien precise genetic stocks. Mol Breed 34:273–281

    Article  CAS  Google Scholar 

  • Marais GF, Marais AS (1990) The assignment of a Thinopyrum distichum (Thunb.) Löve-derived translocation to the long arm of wheat chromosome 7D using endopeptidase polymorphisms. Theor Appl Genet 79:182–186

    Article  CAS  PubMed  Google Scholar 

  • Martín A, Martín LM, Cabrera A, Ramírez MC, Giménez MJ, Rubiales P, Hernández P, Ballesteros J (1998) The potential of Hordeum chilense in breeding Triticeae species. In: Jaradat AA (ed) Triticeae III. Science Publications, Enfield, pp 377–386

    Google Scholar 

  • Martín AC, Atienza SG, Ramirez MC, Barro F, Martin A (2008) Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6HchS chromosome addition. Aust J Agric Res 59:206–213

    Article  Google Scholar 

  • Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, Muñoz-Amatriaín M, Close TJ, Wise RP, Schulman AH, Himmelbach A, Mayer KFX, Scholz U, Poland JA, Stein N, Waugh R (2013) Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J 76:718–727. doi:10.1111/tpj.12319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayer KFX, Martis M, Hedley PE, Šimková H, Liu H, Morris JA, Steuernagel B, Taudien S, Roessner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Doležel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263. doi:10.1105/tpc.110.082537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, Graner A, Matsumoto T, Sato K, Schulman A, Ariyadasa R, Schulte D, Poursarebani N, Zhou R, Steuernagel B, Mascher M, Scholz U, Shi B, Madishetty K, Svensson JT, Bhat P, Moscou M, Resnik J, Muehlbauer GJ, Hedley P, Liu H, Morris J, Frenkel Z, Korol A, Bergès H, Taudien S, Felder M, Groth M, Platzer M, Himmelbach A, Lonardi S, Duma D, Alpert M, Cordero F, Beccuti M, Ciardo G, Ma Y, Wanamaker S, Cattonaro F, Vendramin V, Scalabrin S, Radovic S, Wing R, Morgante M, Nussbaumer T, Gundlach H, Martis M, Poland J, Pfeifer M, Moisy C, Tanskanen J, Zuccolo A, Spannagl M, Russell J, Druka A, Marshall D, Bayer M, Swarbreck D, Sampath D, Ayling S, Febrer M, Caccamo M, Tanaka T, Wannamaker S, Schmutzer T, Brown JWS, Fincher GB, Stein N (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    CAS  PubMed  Google Scholar 

  • Mellado-Ortega E, Hornero-Mendez D (2012) Isolation and identification of lutein esters, including their regioisomers, in tritordeum (×Tritordeum Ascherson et Graebner) grains: evidence for a preferential xanthophyll acyltransferase activity. Food Chem 135:1344–1352

    Article  CAS  PubMed  Google Scholar 

  • Miller TE, Reader SM, Chapman V (1982) The addition of Hordeum chilense chromosomes to wheat. In: Broertjes C (ed) Proceedings of international symposium on Eucarpia on induced variability in plant breeding, Wageningen, Pudoc, pp 79–81

  • Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeat DNA probes. Genome 36:489–494

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao S, Cistué L, Cuesta-Marcos A, Forrest KL, Hayden MJ, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Vallés MP, Wulff BBH, Muehlbauer GJ, Doležel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249. doi:10.3835/plantgenome2011.08.0023

    Article  Google Scholar 

  • Murray YHG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nasuda S, Kikkawa Y, Ashida T, Rafiqul Islam AKM, Sato K, Endo TR (2005) Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet Syst 80:357–366

    Article  CAS  PubMed  Google Scholar 

  • Payne PI, Holt LM, Reader SM, Miller TE (1987) Chromosomal location of genes coding for endosperm proteins of Hordeum chilense, determined by two-dimensional electrophoresis of wheat-H. chilense chromosome addition lines. Biochem Genet 25:53–65

    Article  CAS  PubMed  Google Scholar 

  • Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593

    Article  CAS  PubMed  Google Scholar 

  • Person-Dedryver F, Jahier J, Miller TE (1990) Assessing the resistance to cereal root-knot nematode, Meloidogyne naasi, in a wheat line with the added chromosome arm 1HchS of Hordeum chilense. J Genet Breed 44:291–295

    Google Scholar 

  • Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Func Integr Genomics 9:473–484

    Article  CAS  Google Scholar 

  • Rayburn AL, Gill BS (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep 4:102–109

    Article  CAS  Google Scholar 

  • Röder M, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    Google Scholar 

  • Rodríguez-Suárez C, Atienza SG (2012) Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae. BMC Plant Biol 12:200

    Article  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Suárez C, Atienza SG (2014) Polyphenol oxidadese genes in Hordeum chilense and implications in tritordeum breeding. Mol Breed. doi 10.1007/s11032-014-0145-9

  • Rodríguez-Suárez C, Atienza SG, Piston F (2011) Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. Et Schult. PLoS One 6:e19885

  • Rodríguez-Suárez C, Giménez M, Gutiérrez N, Ávila C, Machado A, Huttner E, Ramírez M, Martín A, Castillo A, Kilian A, Atienza SG (2012) Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. Theor Appl Genet 124:713–722. doi:10.1007/s00122-011-1741-2

    Article  PubMed  Google Scholar 

  • Rodríguez-Suárez C, Mellado-Ortega E, Hornero-Méndez D, Atienza SG (2014) Increase in transcript accumulation of Psy1 and e-Lcy genes in grain development is associated with differences in seed carotenoid content between durum wheat and tritordeum. Plant Mol Biol 84:659–673

    Article  PubMed  Google Scholar 

  • Rubiales D, Reader SM, Martin A (2000) Chromosomal location of resistance to Septoria tritici in Hordeum chilense determined by the study of chromosomal addition and substitution lines in ‘Chinese Spring’ wheat. Euphytica 115:221–224

    Article  Google Scholar 

  • Said M, Cabrera A (2009) A physical map of chromosome 4Hch from H. chilense containing SSR, STS and EST-SSR molecular markers. Euphytica 167:253–259. doi:10.1007/s10681-009-9895-6

  • Said M, Recio R, Cabrera A (2012) Development and characterisation of structural changes in chromosome 3Hch from Hordeum chilense in common wheat and their use in physical mapping. Euphytica 188:429–440. doi:10.1007/s10681-012-0712-2

    Article  Google Scholar 

  • Shi F, Endo TR (1999) Genetic induction of structural changes in barley chromosomes added to common wheat by a gametocidal chromosome derived from Aegilops cylindrica. Genes Genet Syst 74:49–54

    Article  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Func Integr Genomics 4:12–25

    Article  CAS  Google Scholar 

  • Thomas HM, Pickering RA (1985) Comparison of the hybrid Hordeum chilense × H. vulgare, H. chilense × H. bulbosum, H. chilense × Secale cereale and the amphiploid of H. chilense × H. vulgare. Theor Appl Genet 69:519–522

  • van Ginkel M, Ogbonnaya F (2007) Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res 104:86–94

    Article  Google Scholar 

Download references

Acknowledgments

M. G. Mattera was recipient of a fellowship from Ministerio de Economía y Competitividad (BES-2012-055961). The authors thank Prof. Tsujimoto (Tottori University, Japan), for providing barley EST primer sequences. This research was funded by Grant AGL2011-24399, from Ministerio de Economía y Competitividad including FEDER funding. We are grateful to Ana Pozo for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cabrera.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattera, M.G., Ávila, C.M., Atienza, S.G. et al. Cytological and molecular characterization of wheat-Hordeum chilense chromosome 7Hch introgression lines. Euphytica 203, 165–176 (2015). https://doi.org/10.1007/s10681-014-1292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1292-0

Keywords

Navigation