Skip to main content
Log in

Inferring tropical popcorn gene pools based on molecular and phenotypic data

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Studies on tropical popcorn (Zea mays L. ssp. mays) gene pools are still scarce. The objective of this study was to infer tropical popcorn gene pools by employing molecular and phenotypic information. Forty-eight inbred lines and 140 individuals belonging to the Viçosa and Beija-Flor popcorn populations were genotyped using 90 simple sequence repeat (SSR) and 93 single nucleotide polymorphism (SNP) markers, respectively. Grain yield and expansion volume were analyzed for the inbred lines and the hybrids obtained from intra- and interpopulation diallels. The cluster analysis based on SSR markers grouped 46 inbred lines into two groups according to their origin population. Principal coordinate and population structure analyses based on SSR and SNP markers confirmed the results from the clustering. For grain yield, midparent heterosis was greater in the interpopulation hybrids than in the intrapopulation hybrids. The genetic distance did not correlate with the specific combining ability effects and showed a week to intermediate correlation with hybrid performance and midparent heterosis. Based on the results from clustering, population structure, genetic diversity, heterosis and diallel analyses, Viçosa and Beija-Flor populations belong to distinct gene pools. Furthermore, inferring tropical popcorn gene pools might be more efficient if molecular marker and phenotypic data are combined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeyemo O, Menkir A, Melaku G, Omidiji O (2011) Genetic diversity assessment and relationship among tropical-yellow endosperm maize inbred lines using SSR markers. Maydica 56:1703

    Google Scholar 

  • Babu R, Nair SK, Kumar A, Rao HS, Verma P, Gahala A, Singh IS, Gupta HS (2006) Mapping QTL for popping ability in a popcorn × flint corn cross. Theor Appl Genet 112:1392–1399

    Article  CAS  PubMed  Google Scholar 

  • Badu-Apraku B, Oyekunle M, Fakorede MAB, Vroh I, Akinwale RO, Aderounmu M (2013) Combining ability, heterotic pattern and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica 192:413–433

    Article  CAS  Google Scholar 

  • Barata C, Carena MJ (2006) Classification of North Dakota maize inbred lines into heterotic groups based on molecular and testcross data. Euphytica 151:339–349

    Article  CAS  Google Scholar 

  • Barbosa AMM, Geraldi IO, Benchimol LL, Garcia AAF, Souza CL Jr, Souza AP (2003) Relationship of intra- and interpopulation tropical maize single cross hybrid performance and genetic distances computed from AFLP and SSR markers. Euphytica 130:87–99

    Article  CAS  Google Scholar 

  • Bernardo R (1992) Relationship between single-cross performance and molecular marker heterozygosity. Theor Appl Genet 83:628–634

    Article  CAS  PubMed  Google Scholar 

  • Betrán FJ, Ribaut JM, Beck D, de Gonzalez Leon D (2003) Genetic diversity, specific combining ability and heterosis in tropical maize under stress and nonstress environments. Crop Sci 43:797–806

    Article  Google Scholar 

  • Bracco M, Lia VV, Gottlieb AM, Hernández JC, Poggio L (2009) Genetic diversity in maize landraces from indigenous settlements of Northeastern Argentina. Genetica 135:39–49

    Article  PubMed  Google Scholar 

  • Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing data inference for whole genome association studies using localized haplotype clustering. Am J Hum Genet 81:1084–1097. doi:10.1086/521987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calinski T, Harabsz J (1974) A dendrite method for cluster analysis. Commun Stat 3:1–27

    Article  Google Scholar 

  • Chae SS, Warde WD (2006) Effect of using principal coordinates and principal components on retrieval of clusters. Comput Stat Data Anal 50:1407–1417

    Article  Google Scholar 

  • CIMMYT (2005) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 3rd edn. CIMMYT, Mexico

    Google Scholar 

  • Devi P, Singh NK (2011) Heterosis, molecular diversity, combining ability and their interrelationships in short duration maize (Zea mays L.) across the environments. Euphytica 178:71–81

    Article  Google Scholar 

  • Dhliwayo T, Pixley K, Menkir A, Warburton M (2009) Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines. Crop Sci 49:1201–1210

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Garcia EW, Lebruska LL, Laurent M, Shen R, Barker D (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Buckler ES, Tiffin P, Ersoz E, Springer NM (2009) Heterosis in prevalent for multiple traits in diverse maize germplasm. PLoS ONE 10:e7433. doi:10.1371/journal.pone.0007433

    Article  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2009) ASReml user guide. Release 3.0. VSN International Ltd., Hemel Hempstead

  • Li YL, Lv DB, Wang YZ, Chen SJ, Tang JH (2004) Study on the genetic diversity of popcorn inbreds and their germplasm relationship with normal corn inbreds using SSR markers. Maydica 49:327–333

    Google Scholar 

  • Li YL, Dong YB, Niu SZ, Cui DQ (2007) QTL for popping characteristics in popcorn. Plant Breed 126:509–514

    Article  Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler ES, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu HJ, Bernardo R, Ohm HW (2003) Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers. Theor Appl Genet 106:423–427

    CAS  PubMed  Google Scholar 

  • Lu YL, Yan JB, Guimarães CT, Taba S, Hao ZF, Gao SB, Chen SJ, Li JS, Zhang SH, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Parentoni SN, Shah T, Rong TZ, Crouch JH, Xu YB (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115

    Article  CAS  PubMed  Google Scholar 

  • Lynch ML (1990) The similarity index and DNA fingerprinting. Mol Biol Evol 7:478–484

    CAS  PubMed  Google Scholar 

  • Makumbi D, Betrán JF, Bänziger M, Ribaut JM (2011) Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 180:143–162

    Article  Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002) Microsatellites in Zea—variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104:436–450

    Article  CAS  PubMed  Google Scholar 

  • Munhoz REF, Prioli AJ, Amaral Júnior AT, Scapim CA, Simon GA (2009) Genetic distance between popcorn populations based on molecular markers and correlations with heterosis estimates made by diallel analysis of hybrids. Genet Mol Res 8:951–962

    Article  CAS  PubMed  Google Scholar 

  • Osorno JM, Carena MJ (2008) Creating groups of maize genetic diversity for grain quality: implications for breeding. Maydica 53:131–141

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Beck D, Bohn M, Frisch M (2003a) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107:947–957

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Srinivasan G, Bohn M, Frisch M (2003b) Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Sci 43:1275–1282

    Article  Google Scholar 

  • Reif JC, Hallauer AR, Melchinger AE (2005) Heterosis and heterotic patterns in maize. Maydica 50:215–223

    Google Scholar 

  • Rohlf FJ (2009) NTSYSpc: numerical taxonomy and multivariate analysis system. Exeter Softw, New York

    Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Santacruz-Varela A, Widrlechner MP, Ziegler KE, Salvador RJ, Millard MJ, Bretting PK (2004) Phylogenetic relationships among North American popcorns and their evolutionary links to Mexican and South American popcorns. Crop Sci 44:1456–1467

    Article  CAS  Google Scholar 

  • Senior ML, Murphy JP, Goodman MM, Stuber CW (1998) Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Sci 38:1088–1098

    Article  Google Scholar 

  • Sharma L, Prasanna BM, Ramesh B (2010) Analysis of phenotypic and microsatellite-based diversity of maize landraces in India, especially from the North East Himalayan region. Genetica 138:619–631

    Article  CAS  PubMed  Google Scholar 

  • Solomon KF, Zeppa A, Mulugeta SD (2012) Combining ability, genetic diversity and heterosis in relation to F1 performance of tropically adapted shrunken (sh2) sweet corn lines. Plant Breed 131:430–436

    Article  Google Scholar 

  • Studer M (2013) WeightedCluster library manual: a practical guide to creating typologies of trajectories in the social sciences with R. LIVES working papers, 24. doi:10.12682/lives.2296-1658.2013.24

  • Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299

    Article  PubMed Central  PubMed  Google Scholar 

  • Viana JMS, Valente MSF, Scapim CA, Resende MDV, Silva FF (2011) Genetic evaluation of tropical popcorn inbred lines using BLUP. Maydica 56:273–281

    Google Scholar 

  • Viana JMS, Valente MSF, Silva FF, Mundim GB, Paes GP (2013) Efficacy of population structure analysis with breeding populations and inbred lines. Genetica 141:389–399

    Article  PubMed  Google Scholar 

  • Xie C, Warburton M, Li M, Li X, Xiao M, Hao Z, Zhao Q, Zhang S (2008) An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breed 21:407–418

    Article  Google Scholar 

  • Yang X, Gao S, Xu S, Zhang Z, Prasanna BM, Li L, Li J, Yan J (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed 28:511–526

    Article  Google Scholar 

  • Zheng D, Van K, Lee S (2008) Molecular diversity and relationships among elite maize inbreds from US and CIMMYT populations and current heterotic groups in China. Hereditas 145:182–193

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Foundation for Research Support of Minas Gerais State (Fapemig), the Brazilian Federal Agency for Support and Evaluation of Graduate Education (Capes) and the National Council for Scientific and Technological Development (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marcelo Soriano Viana.

Appendix

Appendix

  • BLUP analysis, partial diallel # title line

  • env 8 # environments

  • blo 3 # blocks

  • gv 11 !i !sort # general combining ability effects of Viçosa inbreds

  • gbf 12 !i !sort # general combining ability effects of Beija-Flor inbreds

  • sca 102 !i !sort # SCA effects

  • ev # expansion volume

  • gy # grain yield

  • s # s—60 # final stand—ideal stand

  • m # m—14.5 # grain moisture—14.5

  • Av.grm # additive relationship matrix for Viçosa inbreds

  • Abf.grm # additive relationship matrix for Beija-Flor inbreds

  • D.grm # dominance relationship matrix

  • vxbf.asd # data file

  • !maxit 100 # maximum number of iterations

  • ev ~ mu env env.blo !r giv(gv,1) 1 giv(gbf,2) 1 giv(sca,3) 1 gv.env gbf.env sca.env !f mv

  • #gy ~ mu env env.blo s m !r giv(gv,1) 1 giv(gbf,2) 1 giv(sca,3) 1 gv.env gbf.env sca.env !f mv

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundim, G.B., Viana, J.M.S., Maia, C. et al. Inferring tropical popcorn gene pools based on molecular and phenotypic data. Euphytica 202, 55–68 (2015). https://doi.org/10.1007/s10681-014-1211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1211-4

Keywords

Navigation