Skip to main content
Log in

QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard (Brassica juncea L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A recombinant inbred line (RIL) population was developed following hybridization between a low glucosinolate B. juncea genotype, NUDH-YJ-04 and a high glucosinolate cultivar, RL-1359. RILs differed for seed and leaf glucosinolates, total tocopherols and oil content. A linkage map of length covering 2346.9 cM was constructed. It comprised 198 markers distributed across the 18 linkage groups. The linkage map facilitated analysis of quantitative trait loci (QTL) associated with phytonutrient compounds and the antioxidant molecules. The composite interval mapping helped to identify 21 QTLs on 11 linkage groups with R2 values between 15–53 % at logarithmic of odd (LOD) scores of 3.1–8.6. For seed aliphatic glucosinolates, most significant QTL, explaining 53 % of the phenotypic variation was located on J9, for glucoiberin (IBE-S). QTLs were also identified for indole glucosinolate (NEO-S) (44 %) on J7 and aromatic glucosinolate (NAS-S) (38 %) on J4. Total leaf glucosinolates (TGLC-L) explaining 15–21 % phenotypic variance were mapped to three different genetic intervals on J6 and J14, and total seed glucosinolates (TGLC-S) explained 17 % of the variance on J18. Tocopherol (TOC) QTL was confined to chromosome no. J6 (28 %) and J12 (19 %) at LOD score of 4.8 and 3.1. QTL for Oil content was tagged on J9 at LOD score of 3.2. Candidate genes underlying SIN-S, NEO-S and NAS-S QTLs, were considered to be GSL-elong, MYB-76 and MYB-28 in A4, A7 and A10 respectively. Despite a lower coverage, this is a first linkage map in this crop based solely on SSR markers and can serve as a basic map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexander DE, Silvela SL, Collins FI, Rodgers RC (1967) Analysis of oil content of maize by wide-line NMR. J Am Oil Chem Soc 44:555–558

    Article  CAS  PubMed  Google Scholar 

  • Allard RW (1963) Evidence for genetic restriction of recombination in Lima bean. Genetics 48:1389–1395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson LK, Doyle GG, Brigham B, Carter J, Hooker KD, Lai A, Rice M, Stack SM (2003) High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165:849–865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Axelsson T, Bowman CM, Sharpe AG, Lydiate DJ, Lagercrantz U (2000) Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome 43:679–688

    Article  CAS  PubMed  Google Scholar 

  • Bagheri H, El-Soda M, Kim HK, Fritsche S, Jung C, Aarts MG (2013) Genetic analysis of health-related secondary metabolites in a Brassica rapa recombinant inbred line population. Int J Mol Sci 14:15561–15577

    Article  PubMed Central  PubMed  Google Scholar 

  • Barbieri G, Pernice R, Maggio A, Pascale S, Fogliano V (2008) Glucosinolates profile of Brassica rapa L. subsp. Sylvestris L Janch var esculenta Hort. Food Chem 107:1687–1691

    Article  CAS  Google Scholar 

  • Bisht NC, Gupta V, Ramchiary N, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2009) Fine mapping of loci involved with glucosinolate biosynthesis in oilseed mustard (Brassica juncea) using genomic information from allied species. Theor Appl Genet 118:413–421

    Article  CAS  PubMed  Google Scholar 

  • Boder P, Deak T, Bacso R, Velich I, Bisztray GD, Fascar G, Gyulai P (2006) Morphological and genetic investigation of medieval grape seeds. Acta Hort 89:713–718

    Google Scholar 

  • Chen S, Andreasson E (2001) Update on glucosinolate metabolism and transport. Plant Physiol Biochem 39:743–758

    Article  CAS  Google Scholar 

  • Cheung WY, Friesen L, Rakow GFW, Seguin-Swartz G, Landry BS (1997) A RFLP based linkage map of mustard (Brassica juncea (L.) Czern. and Coss). Theor Appl Genet 94:841–851

    Article  CAS  Google Scholar 

  • Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  CAS  PubMed  Google Scholar 

  • Chyi YS, Hoenecke ME, Sernyk JL (1992) A genetic linkage map of restriction fragment length polymorphism loci for Brassica rapa (syn. campestris). Genome 35:746–757

    Article  CAS  Google Scholar 

  • Clossais-Besnard N, Larher F (1991) Physiological role of glucosinolates in Brassica napus: concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle. J Sci Food Agric 56:25–38

    Article  CAS  Google Scholar 

  • De Givry S, Bouchez M, Chabrier P, Milan D, Schiex T (2005) CARTHAGENE: multi population integrated genetic and radiated hybrid mapping. Bioinformatics 21:1703–1704

    Article  PubMed  Google Scholar 

  • Delourme R, Falentin C, Fomeju BF, Boillot M, Lassalle G, Andre I, Duarte J, Gauthier V, Lucante N, Marty A, Pauchon M, Pichon JP, Ribiere N, Trotoux G, Blanchard P, Riviere N, Martinant JP, Pauquet J (2013) High density SNP based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genom 14:120

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Feng J, Barker J, Meng J (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108

    Article  CAS  PubMed  Google Scholar 

  • Fritsche S, Wang X, Li J, Stuch B, Kopisch-Obuch FJ, Endrigkeit J, Leckband G, Dryer F, Friedt W, Meng J, Jung C (2012) A candidate gene-based association study of tocopherol content and composition in rapeseed (Brassica napus) front. Plant Sci 3:1293

    Google Scholar 

  • Garcia-Moreno MJ, Velasco L, Perez-Vich B (2010) Transferability of non-genic microsatellite and gene-based sunflower markers to safflower. Euphytica 175:145–150

    Article  CAS  Google Scholar 

  • Goffman FD, Becker HC (2001) Diallel analysis for tocopherol content in seeds of rapeseed. Crop Sci 41:1072–1079

    Article  CAS  Google Scholar 

  • Gosselin I, Zhou Y, Bousquet J, Isabel N (2002) Megagametophyte-derived linkage maps of white spruce (Picea glauca) based on RAPD, SCAR and ESTP markers. Theor Appl Genet 104:987–997

    Article  CAS  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Harris RS (2007) Improved pairwise alignment of genomic DNA. Ph.D. Thesis, The Pennsylvania State University

  • Henning K, Verkerk R, Dekker M, Bonnema G (2013) Quantitative trait loci analysis of non-enzymatic glucosinolate degradation rates in Brassica oleracea during food processing. Theor Appl Genet 126:2323–2334

    Article  Google Scholar 

  • Issa R, Barker G, Marsh A, Slade SE, Taylor P (2013) An optimized method for profiling glucosinolate content in Brassica enabling plant line selection and quantitative trait locus mapping. Int J Nutr Food Sci 2:10–16

    Article  CAS  Google Scholar 

  • Kayden HJ, Chow CK, Bjornson LK (1973) Spectrophotometric method for determination of tocopherol in red blood cells. J Lipid Res 14:533–540

    CAS  PubMed  Google Scholar 

  • Kianian SF, Quiros CF (1992) Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554

    CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Gershenzon J, Mitchell-Olds T (2001) Comparative quantitative trait loci mapping of aliphatic, indole and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159:359–370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Annu Eugen 12:172–175

    Article  Google Scholar 

  • Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541–1548

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ramchiary N, Choi SR, Van Nguyen D, Hossain MJ, Yang HK (2010) Development of high density integrated reference genetic map for multinational Brassica rapa genome sequencing project. Genome 53:939–947

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Hammerlind J, Keller W, McVetty PBE, Daayf F, Quiros CF, Li G (2010) MAM gene silencing leads to the induction of C3 and reduction of C4 and C5 side chain aliphatic glucosinolates in Brassica napus. Mol Breed 27:467–478

    Article  Google Scholar 

  • Lorieux M (2007) MapDisto: A free, user-friendly program for computing genetic maps. In: plant and animal genome XV conference, San Diego, pp 958

  • Lou P, Zhao J, He H, Hanhart C, Del Carpio D, Verkerk R, Custers J, Koorneef M, Bonnema G (2008) Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New Phytol 179:1017–1032

    Article  CAS  PubMed  Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Manen JF, Bouby L, Dalnoki O, Marioval P, Turgay M, Schlimbaum A (2003) Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. J Archaeol Sci 30:721–729

    Article  Google Scholar 

  • Marwede V, Gu MK, Becker HC, Ecke W (2005) Mapping of QTL controlling tocopherol content in winter oilseed rape. Plant Breed 124:20–26

    Article  CAS  Google Scholar 

  • Norton R, Burton W, Salisbury P (2004) Canola quality Brassica juncea for Australia. In: 4th International Crop Science Congress, Brisbane, p 97–98

  • Ping S, Rodney JM, Galwey N, Deve W (2003) Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Aust J Agric Res 54:397–407

    Article  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Pongracz G, Weiser H, Matzig D (1995) Tocopherols of natural antioxidants. Fat Sci Technol 3:90–104

    Google Scholar 

  • Pradhan AK, Sodhi YS, Mukhopadhyay A, Pental D (1993) Heterosis breeding in Indian mustard (Brassica juncea L. Czern and Coss): analysis of component characters contributing to heterosis for yield. Euphytica 69:219–229

    Article  Google Scholar 

  • Pradhan AK, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D (2003) A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet 106:607–614

    CAS  PubMed  Google Scholar 

  • Punjabi P, Jagannath A, Bisht NC, Lakshmi Padmaja K, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genom 9:113–132

    Article  Google Scholar 

  • Raman H, Raman R, Kilian A, Detering F, Long Y, Edwards D, Parkin IAP, Sharpe AG, Nelson MN, Larkan N, Zou J, Meng J, Aslam MN, Batley J, Cowling WA, Lydiate D (2013) A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in the genetic dissection of qualitative and quantitative traits. BMC Genom 14:277

    Article  CAS  Google Scholar 

  • Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS (2007a) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of true QTL. Theor Appl Genet 116:77–85

    Article  CAS  PubMed  Google Scholar 

  • Ramchiary N, Padamja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2007b) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of a major oilseed crop of dryland areas. Theor Appl Genet 115:807–817

    Article  CAS  PubMed  Google Scholar 

  • Richard S, Wijesundera C, Salisbury P (2008) Genotype and growing environment effects on the tocopherols and fatty acids of Brassica napus and Brassica juncea. J Am Oil Chem Soc 85:159–168

    Article  Google Scholar 

  • Sang JP, Minchinton IR, Johnstone PK, Truscott RJ (1984) Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede. Can J Plant Sci 64:87–93

    Article  Google Scholar 

  • Schultz G (1990) Biosynthesis of α-tocopherol in chloroplasts of higher plants. Fat Sci Technol 92:86–90

    CAS  Google Scholar 

  • Scott KD, Eggler P, Seaton G, Rossetto M, Ablet EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    Article  CAS  Google Scholar 

  • Sebastian RL, Howell EC, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet 100:75–81

    Article  CAS  Google Scholar 

  • Snowdon RJ (2007) Cytogenetics and genome analysis in Brassica crops. Chromosom Res 15:85–95

    Article  CAS  Google Scholar 

  • Sodhi YS, Mukhopadhyay A, Arumugam N, Verma JK, Gupta V, Pental D (2002) Genetic analysis of total glucosinolate in crosses involving a high glucosinolate Indian variety and a low glucosinolate line of Brassica juncea. Plant Breed 121:508–511

    Article  CAS  Google Scholar 

  • Soengas P, Hand P, Vicente JG, Pole JM, Pink D (2007) Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet 114:637–645

    Article  CAS  PubMed  Google Scholar 

  • Sonderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  PubMed  Google Scholar 

  • Sorenson H (1990) Glucosinolates: structure, properties, function. In: Shahide F (ed) Canola and rapeseed. Van Nostrand Reinhold, New York, pp 149–172

    Chapter  Google Scholar 

  • Srivastava A, Gupta V, Pental D, Pradhan AK (2001) AFLP-based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica juncea. Theor Appl Genet 102:193–199

    Article  CAS  Google Scholar 

  • Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Toroser D, Thorman CE, Osborn TC, Mithen R (1995) RFLP mapping of quantitative trait loci controlling seed aliphatic-glucosinolate content in oilseed rape (Brassica napus L). Theor Appl Genet 91:802–808

    Article  CAS  PubMed  Google Scholar 

  • Truco MJ, Quiros CF (1994) Structure and organization of the B genome based on the linkage map in Brassica nigra. Theor Appl Genet 89:590–598

    Article  CAS  PubMed  Google Scholar 

  • Velasco L, Fernández-Martínez JM, De Haro A (2003) Inheritance of increased oleic acid concentration in high erucic acid Ethiopian mustard. Crop Sci 43:106–109

    Article  CAS  Google Scholar 

  • Velasco P, Cartea ME, Gonzalez C, Vilar M, Ordas A (2007) Factors affecting the glucosinolate content of kale (Brassica oleracea acephala group). J Agric Food Chem 55:955–962

    Article  CAS  PubMed  Google Scholar 

  • Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowland I, De Schrijver R, Hansen M, Gerhauser C, Mithen R (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:219–265

    Article  Google Scholar 

  • Voorips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012a) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Wang X, Zhang C, Li L, Fristche S, Endrigkeit J, Zhang W, Long Y, Jung C, Meng J (2012b) Unraveling the genetic basis of seed tocopherol content and composition in rapeseed (Brassica napus L.). PLoS ONE 7:e50038. doi:10.1371/journal.pone.0050038

  • Wang X, Wang H, Long Y, Li D, Yin Y, Tian J, Chen L, Liu L, Zhao W, Zhao Y, Yu L, Li M (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS ONE 8:e80569. doi:10.1371/journal.pone.0080569

    Article  PubMed Central  PubMed  Google Scholar 

  • Woods DL, Capcara JJ, Downey RK (1991) The potential of mustard (Brassica juncea L.) Czern and Coss as an edible oil crop on the Canadian Prairies. Can J Plant Sci 71:195–198

    Article  Google Scholar 

  • Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Michael MT, Govindjee R (2010) Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta 1797:1428–1438

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu R, Gao Y, Zhang Q (2014) Qunatitative trait locus mapping of floral and related traits using an F2 population of Aquilegia. Plant Breed 133:153–161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Department of Biotechnology (DBT), Government of India for funding a significant part of this work. The present work was a part to the DBT project entitled “Tagging and marker assisted transfer of low glucosinolate trait in B. juncea.” We thank Dr. Parveen Chuneja (Geneticist, School of Agricultural Biotechnology, PAU, Ludhiana, Punjab, India) for her immense support in use of Mapdisto software. We thank Dr. Isobel Parkin for providing B-genome specific primer pairs. SSB also thanks Indian Council of Agricultural Research for the award of ICAR National Professor Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Banga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Sangha, M.K., Kaur, G. et al. QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard (Brassica juncea L.). Euphytica 201, 345–356 (2015). https://doi.org/10.1007/s10681-014-1204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1204-3

Keywords

Navigation