Skip to main content
Log in

Processes underlying branching differences in fodder crops

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Plant architectural characteristics are under strong genetic regulation. Economically important traits for forage crops such as biomass yield, ground cover and persistence can be improved by selecting for particular aerial architectural characteristics. Here, we present an easily applicable method for the spatiotemporal description of branching patterns in red clover (Trifolium pratense) and perennial ryegrass (Lolium perenne), two of the most important forage crops in Europe. A detailed analysis of genotypes with contrasting branching phenotypes demonstrates that in these species different factors are the main determinants of shoot branching characteristics. In red clover, bud outgrowth and to a lesser extent bud formation explain inter-genotype branching differences. In perennial ryegrass, differences in the capacity to form new buds determined largely the differences between forage and turf types. However, when a set of four forage types was compared in a separate experiment, variation in quantity and pace of bud formation and bud outgrowth explained the differences in aerial architecture. In both crops, branching patterns are likely determined by several processes, and highly branched phenotypes can result from the formation of more buds, an increased probability of bud outgrowth, or a combination of these processes. Furthermore, the presence of more buds is partly caused by more bud outgrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balfourier F, Charmet G (1991) Relationships between agronomic characters and ecogeographical factors in a collection of French perennial ryegrass populations. Agronomie 11:645–657

    Article  Google Scholar 

  • Bennett T, Leyser O (2006) Something on the side: axillary meristems and plant development. Plant Mol Biol 60:843–854

    Article  PubMed  CAS  Google Scholar 

  • Black AD, Moot DJ, Lucas RJ (2006) Development and growth characteristics of Caucasian and white clover seedlings, compared with perennial ryegrass. Grass Forage Sci 61:442–453

    Article  Google Scholar 

  • Black AD, Laidlaw AS, Moot DJ, O’Kiely P (2009) Comparative growth and management of white and red clovers. Ir J Agric Food Res 48:149–166

    Google Scholar 

  • Briske DD (1991) Developmental morphology and physiology of grasses. In: Heitschmidt RK, Stuth JW (eds) Grazing management—an ecological perspective. Timber Press, Portland, pp 85–108

    Google Scholar 

  • Cnops G, Rohde A, Saracutu O, Malengier M, Roldán-Ruiz I (2010) Morphological and molecular diversity of branching in red clover (Trifolium pratense). In: Huyghe C (ed) Sustainable use of genetic diversity in forage and turf breeding. Springer, Dordrecht, pp 73–77

    Chapter  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221

    Article  PubMed  CAS  Google Scholar 

  • Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403

    Article  Google Scholar 

  • Fustec J, Guilleux J, Le Corff J, Maître J-P (2005) Comparison of early development of three grasses: Lolium perenne, Agrostis stolonifera and Poa pratensis. Ann Bot 96:269–278

    Article  PubMed  Google Scholar 

  • Gautier H, Varlet-Grancher C, Baudry N (1998) Comparison of horizontal spread of white clover (Trifolium repens L.) grown under two artificial light sources differing in their content of blue light. Ann Bot 82:41–48

    Article  Google Scholar 

  • Gray A (1879) Structural botany. Ivison, Blakeman, Taylor and Company, New York

    Google Scholar 

  • Heide OM (1994) Control of flowering and reproduction in temperate grasses. New Phytol 128:347–362

    Article  CAS  Google Scholar 

  • Jamil M, Charnikhova T, Houshyani B, van Ast A, Bouwmeester HJ (2011) Genetic variation in strigolactone production and tillering in rice and its effect on Striga hermonthica infection. Planta 235:473–484

    Article  PubMed  Google Scholar 

  • Kawakatsu T, Taramino G, Itoh J, Allen J, Sato Y, Hong SK, Yule R, Nagasawa N, Kojima M, Kusaba M, Sakakibara H, Sakai H, Nagato Y (2009) PLASTOCHRON3/GOLIATH encodes a glutamate carboxypeptidase required for proper development in rice. Plant J 58:1028–1040

    Article  PubMed  CAS  Google Scholar 

  • Maître JP, Assemat L, Jacquard P (1985) Croissance du trèfle violet (Trifolium pratense L.) en association avec du ray-grass d’Italie (Lolium multiflorum Lam. ssp. italicum). I.—Description de l’organisation morphologique du trèfle. Agronomie 5:251–260

    Article  Google Scholar 

  • McSteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374

    Article  PubMed  CAS  Google Scholar 

  • Moot DJ, Scott WR, Roy AM, Nicholls AC (2000) Base temperature and thermal time requirements for germination and emergence of temperate pasture species. N Z J Agric Res 43:15–25

    Article  Google Scholar 

  • Moreau D, Salon C, Munier-Jolain N (2006) Using a standard framework for the phenotypic analysis of Medicago truncatula: an effective method for characterizing the plant material used for functional genomics approaches. Plant Cell Environ 29:1087–1098

    Article  PubMed  CAS  Google Scholar 

  • Nelson SC (1994) Genotype and cropping system effects on cowpea growth and yield. Dissertation, University of Arizona, Tucson

  • Nelson CJ (2000) Shoot morphological plasticity of grasses: leaf growth vs. tillering. In: Nabinger C, Lemaire G, Hodgson J, de Moraes A, de F Carvalho P (eds) Grassland ecophysiology and grazing ecology. CABI Publishing, Oxfordshire, pp 101–126

    Chapter  Google Scholar 

  • Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74

    Article  PubMed  CAS  Google Scholar 

  • Saracutu O, Cnops G, Roldán-Ruiz I, Rohde A (2010) Phenotypic assessment of variability in tillering and early development in ryegrass (Lolium spp.). In: Huyghe C (ed) Sustainable use of genetic diversity in forage and turf breeding. Springer, Dordrecht, pp 155–160

    Chapter  Google Scholar 

  • Taylor NL, Quesenberry KH (1996) Red clover science. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Thomas R, Hay M, Newton P, Tilbrook J (2003) Relative importance of nodal roots and apical buds in the control of branching in Trifolium repens L. Plant Soil 255:55–66

    Article  CAS  Google Scholar 

  • Vanstraelen M, Benková E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Bi 28:463–487

    Article  CAS  Google Scholar 

  • Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR (2009) Orphan legume crops enter the genomics era. Curr Opin Plant Biol 12:202–210

    Article  PubMed  Google Scholar 

  • Veit B, Briggs S, Schmidt RJ, Yanofsky MF, Hake S (1998) Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393:166–168

    Article  PubMed  CAS  Google Scholar 

  • Verdenal A (2009) De la simulation de la morphogénèse de l’appareil aérien du ray-grass anglais (Lolium perenne L.). Exploration d’un schéma cybernétique inspiré du concept d’auto-organisation et applications. Dissertation, Université de Poitiers

  • Verdenal A, Combes D, Escobar-Gutiérrez AJ (2008) A study of ryegrass architecture as a self-regulated system, using functional–structural plant modelling. Funct Plant Biol 35:911–924

    Article  Google Scholar 

  • Wang Y, Li J (2005) The plant architecture of rice (Oryza sativa). Plant Mol Biol 59:75–84

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  PubMed  CAS  Google Scholar 

  • Wang JH, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20:1231–1243

    Article  PubMed  CAS  Google Scholar 

  • Ward SP, Leyser O (2004) Shoot branching. Curr Opin Plant Biol 7:73–78

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm WW, McMaster GS (1995) Importance of the phyllochron in studying development and growth in grasses. Crop Sci 35:1–3

    Article  Google Scholar 

  • Yang XC, Hwa CM (2008) Genetic modification of plant architecture and variety improvement in rice. Heredity 101:396–404

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Nancy Mergan for excellent technical support with the detailed measurements for plant growth, and Katleen Sucaet and Luc Van Gijseghem for plant maintenance. Tom Ruttink is acknowledged for fruitful discussions and critical reading of the manuscript, Miriam Levenson for English language review. This work was supported by the agency for Innovation by Science and Technology (IWT) [LO 080510]. Annemie Van Minnebruggen is supported by a PhD fellowship of the Institute for Agricultural and Fisheries research (ILVO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Roldán-Ruiz.

Additional information

Annemie Van Minnebruggen and Gerda Cnops have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Supplementary material 2 (EPS 829 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Minnebruggen, A., Cnops, G., Saracutu, O. et al. Processes underlying branching differences in fodder crops. Euphytica 195, 301–313 (2014). https://doi.org/10.1007/s10681-013-0997-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0997-9

Keywords

Navigation