Skip to main content
Log in

Genomic analysis in three Hylocereus species and their progeny: evidence for introgressive hybridization and gene flow

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Interest in vine cacti of the genus Hylocereus (Cactaceae) has grown markedly due to their high economic potential as exotic fruit crops. Thus, we investigate the genomic and genetic characteristics of 18 accessions belonging to three Hylocereus species, from which were produced eight progeny from self-pollination and 51 interspecific-homoploid and -interploid hybrids. We reported ploidy estimation, allele frequencies, polymorphic information content (PIC) and genetic relationships observed among the Hylocereus species and their progeny. The progeny were diploid, triploid, tetraploid, pentaploid, or hexaploid. Each primer combination used in this work amplified different sets of restriction fragments ranging from 74 to 102 bands. Among the total number of bands observed for the Hylocereus accessions and their progeny, 97.5 and 98.1 %, respectively, were polymorphic. The variability of PIC between primers, species and hybrids suggested high heterozygosity and gene flow between them. In addition, amplified fragment length polymorphism (AFLP) markers were used to successfully identify one of the H. megalanthus accessions beforehand as the unknown male progenitor of the allotriploid S-75. AFLP markers demonstrate the efficacy for assessing genetic relationships and introgression; and provide strong support for the pursuit of additional breeding programs of these fruit crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Niemi T, Weeden NF, McCown BH, Hoch WA (2012) Genetic analysis of an interspecific cross in ornamental Viburnum (Viburnum). J Hered 103:2–12

    Article  PubMed  CAS  Google Scholar 

  • Arakaki M, Speranza P, Soltis PS, Soltis DE (2013) Genetic variability of an unusual apomictic triploid cactus—Haageocereus tenuis Ritter—from the Coast of Central Peru. J Hered 104:127–133

    Article  PubMed  Google Scholar 

  • Cisneros A, Tel-Zur N (2010) Embryo rescue and plant regeneration following interspecific crosses in the genus Hylocereus (Cactaceae). Euphytica 174:73–82

    Article  Google Scholar 

  • Cisneros A, Benega Garcia R, Tel-Zur N (2013) Creation of novel interspecific-interploid Hylocereus hybrids (Cactaceae) via embryo rescue. Euphytica 189:433–443

    Article  Google Scholar 

  • Clark-Tapia R, Alfonso-Corrado C, Eguiarte LE, Molina-Freaner F (2005) Clonal diversity and distribution in Stenocereus eruca (Cactaceae), a narrow endemic cactus of the Sonoran Desert. Am J Bot 92:272–278

    Article  PubMed  Google Scholar 

  • Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458

    Article  Google Scholar 

  • de Faria-Tavares JS, Garcia Martin P, Mangolin CA, de Oliveira-Collet SA, Machado MFPS (2013) Genetic relationships among accessions of mandacaru (Cereus spp.: Cactaceae) using amplified fragment length polymorphisms (AFLP). Bioch Syst Ecol 48:12–19

    Article  Google Scholar 

  • Dixon CJ, Schönswetter P, Suda J, Wiedermann MM, Schneeweiss GM (2009) Reciprocal Pleistocene origin and postglacial range formation of an allopolyploid and its sympatric ancestors (Androsace adfinis group, Primulaceae). Mol Phylogenet Evol 50:74–83

    Article  PubMed  CAS  Google Scholar 

  • Drossou A, Katsiotis A, Leggett JM, Loukas M, Tsakas S (2004) Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers. Theor Appl Genet 109:48–54

    Article  PubMed  CAS  Google Scholar 

  • Frankham R, Ballou J, Briscoe D (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Freeland JR, Kirk H, Petersen SD (2011) Molecular Ecology. Wiley, Chichester

    Google Scholar 

  • Garcia C, Jordano P, Godoy JA (2007) Contemporary pollen and seed dispersal in a Prunus mahaleb population: patterns in distance and direction. Mol Ecol 16:1947–1955

    Article  PubMed  CAS  Google Scholar 

  • Gerber S, Mariette S, Streiff R, Bodénès C, Kremer A (2000) Comparison of microsatellites and amplified fragment length polymorphism markers for parentage analysis. Mol Ecol 9:1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Godoy JA, Jordano P (2001) Seed dispersal by animals: exact identification of source trees with endocarp DNA microsatellites. Mol Ecol 10:2275–2283

    Article  PubMed  CAS  Google Scholar 

  • Grivet D, Smouse PE, Sork VL (2005) A novel approach to an old problem: tracking dispersed seeds. Mol Ecol 14:3585–3595

    Article  PubMed  Google Scholar 

  • Ha WY, Shaw PC, Liu J, Yau FCF, Wang J (2002) Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J Agric Food Chem 50:1871–1875

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002) The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89:279–286

    Article  PubMed  CAS  Google Scholar 

  • Isagi Y, Saito D, Kawaguchi H, Tateno R, Watanabe S (2007) Effective pollen dispersal is enhanced by the genetic structure of an Aesculus turbinate population. J Ecol 95:983–990

    Article  Google Scholar 

  • Iwaizumi MG, Takahashi M, Watanabe A, Ubukata M (2009) Simultaneous evaluation of paternal and maternal immigrant gene flow and the implications for the overall genetic composition of Pinus densiflora dispersed seeds. J Hered 101:144–153

    Article  PubMed  Google Scholar 

  • Jiménez JP, Brenes A, Fajardo D, Salas A, Spooner DM (2008) The use and limits of AFLP data in the taxonomy of polyploid wild potato species in Solanum series Conicibaccata. Conserv Genet 9:381–387

    Article  Google Scholar 

  • Jones AG, Ardren WR (2003) Methods of parentage analysis in natural populations. Mol Ecol 12:2511–2523

    Article  PubMed  CAS  Google Scholar 

  • Jones FA, Chen J, Weng GJ, Hubbell SP (2005) A genetic evaluation of seed dispersal in the neotropical tree Jacaranda copaia (Bignoniaceae). Amer Nat 166:543–555

    Article  CAS  Google Scholar 

  • Kiefer C, Dobeš C, Sharbel TF, Koch MA (2009) Phylogeographic structure of the chloroplast DNA gene pool in North American Boechera—A genus and continental-wide perspective. Mol Phylog Evol 52:303–311

    Article  CAS  Google Scholar 

  • Krauss S (1999) Complete exclusion of nonsires in an analysis of paternity in a natural plant population using amplified fragment length polymorphism (AFLP). Mol Ecol 8:217–226

    Article  CAS  Google Scholar 

  • Labra M, Grassi F, Bardini M (2003) Genetic relationship in Opuntia Mill. genus (Cactaceae) detected by molecular marker. Plant Sci 165:1129–1136

    Article  CAS  Google Scholar 

  • Legaria-Solano JP, Alvarado-Cano ME, Gaspar-Hernández R (2005) Genetic diversity in pitahaya (Hylocereus undatus Haworth. Britton and Rose). Rev Fitotec Mex 28:179–185

    Google Scholar 

  • Lian C, Goto S, Kubo T, Takahashi Y, Nakagawa M, Hogetsu T (2008) Nuclear and chloroplast microsatellite analysis of Abies sachalinensis regeneration on fallen logs in a subboreal forest in Hokkaido, Japan. Mol Ecol 17:2948–2962

    Article  PubMed  Google Scholar 

  • Lichtenzveig J, Abbo S, Nerd A, Tel-Zur N, Mizhrahi Y (2000) Cytology and mating systems in the climbing cacti Hylocereus and Selenicereus. Am J Bot 87:1058–1065

    Article  PubMed  CAS  Google Scholar 

  • Mc Gregor CE, Lambert CA, Greyling MM, Loue JH, Warnich L (2000) A comparative assessment of DNA fingerprinting techniques (RAPD, ISSR, AFLP and SSR) in tetraploid potato (Solanum tuberosum L.) germplasm. Euphytica 113:135–144

    Article  CAS  Google Scholar 

  • Merten S (2003) A review of Hylocereus production in the United States. J PACD 5:98–105

    Google Scholar 

  • Mizrahi Y, Nerd A (1999) Climbing and columnar cacti, new arid land fruit crops. In: Janick J (ed) Perspective on new crops and new uses. ASHS Press, Alexandria, pp 358–366

    Google Scholar 

  • Moghaddam M, Omidbiagi R, Naghavi MR (2011) Evaluation of genetic diversity among Iranian accessions of Ocimum spp. using AFLP markers. Biochem Syst Ecol 39:619–626

    Article  CAS  Google Scholar 

  • Negrón-Ortiz V (2007) Chromosome numbers, nuclear DNA content, and polyploidy in Consolea (Cactaceae), an endemic cactus of the Caribbean islands. Am J Bot 94:1360–1370

    Article  PubMed  Google Scholar 

  • Nilsen LB, Dhillion SS, Camargo-Ricalde SL (2005) Traditional knowledge and genetic diversity of Opuntia pilifera (Cactaceae) in the Tehuacán-Cuicatlán valley, México. Econ Bot 59:366–376

    Article  Google Scholar 

  • Ouborg NJ, Piquot Y, Van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87:551–568

    Article  Google Scholar 

  • Ozias-Akins P (2006) Apomixis: developmental characteristics and genetics. Crit Rev Plant Sci 25:199–214

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin. Accessed 9 March 2013

  • Plume O, Straub SC, Tel-Zur N, Cisneros A, Schneider B, Doyle JJ (2013) Testing a hypothesis of intergeneric allopolyploidy in vine cacti (Cactaceae: Hylocereeae). Syst Bot 38(3):104–117

    Article  Google Scholar 

  • Rahimmalek M, Tabatabaei BES, Arzani A, Etemadi N (2009) Assessment of genetic diversity among and within Achillea species using amplified fragment length polymorphism (AFLP). Biochem Syst Ecol 37:354–361

    Article  CAS  Google Scholar 

  • Resende AG, Mangolin CA, Machado MFPS (2010) Somaclonal variation in Cereus peruvianus Mill. (Cactaceae): its potential to generate new varieties and broaden the species’s genetic basis. J Basic Appl Genet 21:33–42

    Google Scholar 

  • Roldán-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134

    Article  Google Scholar 

  • Schnabel A (1998) Parentage analysis in plants: mating systems, gene flow, and relative fertilities. In: Carvalho GR (ed) Advances in molecular ecology. IOS, The Netherlands, pp 173–189

    Google Scholar 

  • Segura S, Scheinvar L, Olalde G, Leblanc O, Filardo S, Muratalla A, Gallegos C, Flores C (2007) Genome sizes and ploidy levels in Mexican cactus pear species Opuntia (Tourn.) Mill. series Streptacanthae Britton et Rose, Leucotrichae DC., Heliabravoanae Scheinvar and Robustae Britton et Rose. Genet Resour Crop Evol 54:1033–1041

    Article  Google Scholar 

  • Shedbalkar UU, Adki VS, Jadhav JP, Bapat VA (2010) Opuntia and other cacti: applications and biotechnological insights. Trop Plant Biol 3:136–150

    Article  CAS  Google Scholar 

  • Smouse PE, Sork VL, Scofield DG, Grivet D (2012) Using seedling and pericarp tissues to determine maternal parentage of dispersed valley oak recruits. J Hered 103:250–259

    Article  PubMed  Google Scholar 

  • Sostaric I, Liber Z, Grdisa M, Marin PD, Stevanovic ZD, Satovic Z (2012) Genetic diversity and relationships among species of the genus Thymus L. (section Serpyllum). Flora 207:654–661

    Article  Google Scholar 

  • Stappen JV, Weltjens I, Gama Lopez S, Volckaert G (2000) Genetic diversity in Mexican Stylosanthes humilis as revealed by AFLP, compared to the variability of S. humilis accessions of South American origin. Euphytica 113:145–154

    Article  Google Scholar 

  • Teege P, Kadereit J, Kadereit G (2011) Tetraploid European Salicornia species are best interpreted as ecotypes of multiple origins. Flora 206:910–920

    Article  Google Scholar 

  • Tel-Zur N, Abbo S, Bar-Zvi D, Mizrahi Y (2003) Chromosome doubling in vine cacti hybrids. J Hered 94:329–333

    Article  PubMed  CAS  Google Scholar 

  • Tel-Zur N, Abbo S, Bar-Zvi D, Mizrahi Y (2004a) Clone identification and genetic relationship among vine cacti from the genera Hylocereus and Selenicereus based on RAPD analysis. Sci Hortic 100:279–289

    Article  CAS  Google Scholar 

  • Tel-Zur N, Abbo S, Bar-Zvi D, Mizhrahi Y (2004b) Genetic relationships among Hylocereus and Selenicereus vine cacti (Cactaceae): evidence from hybridization and cytological studies. Ann Bot 94:527–534

    Article  PubMed  Google Scholar 

  • Tel-Zur N, Mizrahi Y, Cisneros A, Mouyal J, Schneider B, Doyle JJ (2011) Phenotypic and genomic characterization of vine cactus collection (Cactaceae). Genet Resour Crop Evol 58:1075–1085

    Article  Google Scholar 

  • Terakawa M, Isagi Y, Matsui K, Yumoto T (2009) Microsatellite analysis of the maternal origin of Myrica rubra seeds in the feces of Japanese macaques. Ecol Res 24:663–670

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Weiss J, Nerd A, Mizrahi Y (1994) Flowering behavior and pollination requirements in climbing cacti with fruit crop potential. HortScience 29:1487–1492

    Google Scholar 

  • Zuriaga E, Blanca J, Nuez F (2009) Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol 56:663–678

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge to Prof. G. Grafi for instructive discussions and valuable comments on the manuscript. We want to extend our gratitude to Mr. J. Mouyal and to the late Dr. B. Schneider for their valuable assistance, and to Mr. P. Martin for editing the manuscript.

Funding

This work was partial supported by Ben Gurion University of the Negev at the Kreitman School for Advanced Graduate Studies (Zin Fellowship to A.C.); and at the Albert Katz International School for Desert Studies (Doctoral fellowship to A.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemi Tel-Zur.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cisneros, A., Tel-Zur, N. Genomic analysis in three Hylocereus species and their progeny: evidence for introgressive hybridization and gene flow. Euphytica 194, 109–124 (2013). https://doi.org/10.1007/s10681-013-0979-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-0979-y

Keywords

Navigation