Skip to main content
Log in

Comparative molecular marker-based genetic mapping of flavanone 3-hydroxylase genes in wheat, rye and barley

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The F3 h gene encoding flavanone 3-hydroxylase, one of the key enzymes of the flavonoid biosynthesis pathway, is involved in plant defense response, however, it has not yet been genetically mapped in such important crop species as wheat, barley and rye. In the current study, the F3 h genes were for the first time genetically mapped in these species, using microsatellite and RFLP markers. The three wheat F3 h homoeologous copies F3 h-A1, F3 h-B1 and F3 h-D1, and rye F3 h-R1 were mapped close to the microsatellite loci Xgwm0877 and Xgwm1067 on chromosomes 2AL, 2BL, 2DL, and 2RL, respectively. Wheat F3 h-G1 and barley F3 h-H1 were also mapped at the homoeologous F3 h-1 position on chromosomes 2GL and 2HL, respectively. The non-homoeologous F3 h gene (F3 h-B2) was mapped on wheat chromosome 2BL about 40 cM distal to the F3 h-1 map position. The results obtained in the current study are important for further studies aimed on manipulation with F3 h expression (and, hence, plant defense) in wheat, barley and rye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäfer AA, Zhang JZ, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST; a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ardi R, Kobiler I, Jacoby B, Keen NT, Prusky D (1998) Involvement of epicatechin biosynthesis in the activation of the mechanism of resistance of avocado fruits to Colletotrichum gloeosporioides. Physiol Mol Plant Pathol 53:269–285

    Article  CAS  Google Scholar 

  • Börner A, Korzun V, Worland AJ (1998) Comparative genetic mapping of mutant loci affecting plant height and development in cereals. Euphytica 100:245–248

    Article  Google Scholar 

  • Börner A, Korzun V, Malyshev S, Invadic V, Graner A (1999) Molecular mapping of two dwarfing genes differing in their GA response on chromosome 2H of barley. Theor Appl Genet 99:670–675

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Cheng H, Yang H, Zhang D, Gai J, Yu D (2010) Polymorphisms of soybean isoflavone synthase and flavanone 3-hydroxylase genes are associated with soybean mosaic virus resistance. Mol Breed 25:13–24

    Article  CAS  Google Scholar 

  • Cho S, Chen W, Muehlbauer FJ (2005) Constitutive experssion of the flavanone 3-hydroxylase gene related to pathotype-specific ascochyta blight resistance in Cicer arietinum L. Physiol Mol Plant Pathol 67:100–107

    Article  CAS  Google Scholar 

  • Conley EJ, Nduati V, Gonzalez-Hernandez JL, Mesfin A, Trudeau-Spanjers M, Chao S, Lazo G R, Hummel DD, Anderson OD, Qi LL, Gill BS, Echalier B, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Peng JH, Lapitan NLV, Nguyen HT, Ma X-F, Miftahudin, Gustafson JP, Greene RA, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Sidhu D, Dilbirligi M, Gill KS, Choi DW, Fenton RD, Close TJ, McGuire PE, Qualset CO, Anderson JA (2004) A 2600-locus chromosome bin map of wheat homoeologous group 2 reveals interstitial gene rich islands and colinearity with rice. Genetics 168:625–637

    Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucl Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • Deboo GB, Albertsen MC, Taylor LP (1995) Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers. Plant J 7:703–713

    Article  PubMed  CAS  Google Scholar 

  • Driscoll CJ, Sears ER (1971) Individual addition of the chromosomes of ‘Imperial’ rye to wheat. Agron Abstr, 6

  • Flintham JE, Gale MD (1995) Dormancy gene maps in homoeologous cereal genomes. In Proceedings of the 7th International Symposium on Pre-Harvest Sprouting in Cereals, Japan, 1995, pp 143–149

  • Franckowiak JD (1997) Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet Newsl 26:9–21

    Google Scholar 

  • Freed RD, Everson EH, Ringlund K, Gullord M (1976) Seed coat color in wheat and the relationship to seed dormancy at maturity. Cereal Res Commun 4:147–149

    Google Scholar 

  • Giovanini MP, Puthoff DP, Nemacheck JA, Mittapalli O, Saltzmann KD, Ohm HW, Shukle RH, Williams CE (2006) Gene-for-gene defense of wheat against the Hessian fly lacks a classical oxidative burst. Mol Plant-Microbe Interact 19:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Gould KS (2004) Nature’s swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotech 5:314–320

    Article  Google Scholar 

  • Halloin JM (1982) Localization and changes in catechin and tannins during development and ripening of cottonseed. New Phytol 90:651–657

    Article  CAS  Google Scholar 

  • Khlestkina EK, Pestsova EG, Röder MS, Börner A (2002) Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L). Theor Appl Genet 104:632–637

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Myint Than MH, Pestsova EG, Röder MS, Malyshev SV, Korzun V, Börner A (2004) Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L) including 39 expressed sequencing tags. Theor Appl Genet 109:725–732

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Pshenichnikova TA, Röder MS, Arbuzova VS, Salina EA, Börner A (2006) Comparative mapping of genes for glume colouration and pubescence in hexaploid wheat (Triticum aestivum L). Theor Appl Genet 113:801–807

    Article  PubMed  CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Salina EA (2008) Relationship between homoeologous regulatory and structural genes in allopolyploid genome–a case study in bread wheat. BMC Plant Biol 8:88. doi:101186/1471-2229-8-88

    Article  PubMed  Google Scholar 

  • Khlestkina EK, Tereschenko OY, Salina EA (2009a) Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids. Mol Genet Genom 282:475–485

    Article  CAS  Google Scholar 

  • Khlestkina EK, Salina EA, Pshenichnikova TA, Röder MS, Börner A (2009b) Glume coloration in wheat: allelism test, consensus mapping and its association with specific microsatellite allele. Cereal Res Commun 37:37–43

    Article  CAS  Google Scholar 

  • Khlestkina EK, Pshenichnikova TA, Röder MS, Börner A (2009c) Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Res Commun 37:391–398

    Article  CAS  Google Scholar 

  • Khlestkina EK, Röder MS, Pshenichnikova TA, Börner A (2010a) Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L). Mol Breed 25:125–132

    Article  CAS  Google Scholar 

  • Khlestkina EK, Kumar U, Röder MS (2010b) Ent-kaurenoic acid oxidase genes in wheat. Mol Breed 25:251–258

    Article  CAS  Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  CAS  Google Scholar 

  • Korzun V, Malyshev S, Voylokov A, Börner A (1997) RFLP based mapping of three mutant loci in rye (Secale cereale L) and their relation to homoeologous loci within the Gramineae. Theor Appl Genet 95:468–473

    Article  CAS  Google Scholar 

  • Kozlova SA, Khlestkina EK, Salina EA (2009) Specific features in using SNP markers developed for allopolyploid wheat. Rus J Genet 45:81–84. doi:101134/S1022795409010116

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg I (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Leonova IN, Röder MS, Budashkina EB, Kalinina NP, Salina EA (2002) Molecular analysis of leaf rust resistant introgression lines obtained by crossing of hexaploid wheat Triticum aestivum with tetraploid wheat Triticum timopheevii. Rus J Genet 38:1397–1403

    Article  CAS  Google Scholar 

  • Malysheva-Otto LV, Röder MS (2006) Haplotype diversity in the endosperm specific β-amylase gene Bmy1 of cultivated barley (Hordeum vulgare L). Mol Breed 18:143

    Article  CAS  Google Scholar 

  • Marbach I, Meyer AM (1974) Permeability of seed coats to water as related to drying conditions and metabolism of phenolics. Plant Physiol 54:817–820

    Article  PubMed  CAS  Google Scholar 

  • Meldgaard M (1992) Expression of chalcone synthase, dihydroflavonol reductase, and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis. Theor Appl Genet 83:695–706

    Article  CAS  Google Scholar 

  • Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T, Ikeo K, Itoh T, Goiobori T, Sasaki T (2006) The rice annotation project database (RAB-DB): nub for Oryza sativa ssp Japonica genome information. Nucl Acids Res 34:741–744

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Ryan KG, Swinny EE, Winefield C, Markham KR (2001) Flavonoids and UV photoprotection in Arabidopsis mutants. Z Naturforsch 56:745–754

    CAS  Google Scholar 

  • Rychlik W (2007) OLIGO 7 Primer Analysis Software. In: Yuryev A, (ed) Methods in molecular biology vol. 402: PCR primer design, Humana Press Inc, Totowa, NJ, pp 35–59

  • Salina E, Börner A, Leonova I, Korzun V, Laikova L, Maystrenko O, Röder MS (2000) Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet 100:686–689

    Article  CAS  Google Scholar 

  • Salina EA, Leonova IN, Efremova TT, Röder MS (2006) Wheat genome structure: translocations during the course of polyploidization. Funct Integr Genomics 6:71–80

    Article  PubMed  CAS  Google Scholar 

  • Sears ER (1953) Nullisomic analysis in common wheat. Amer Nat 87:245–252

    Article  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney RK, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Cur Op Plant Biol 5:218–223

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Russian Foundation for Basic Research (08-04-00368-a), SB RAS (Lavrentjev project 6.5), L’Oreal-UNESCO fellowship and the Federal Targeted Program of the Russian Federation (state contract P409). The part considering the mapping in barley was conducted in the frame of a GABI-project (0313125A) funded by the BMBF (Bundesministerium für Bildung und Forschung) in Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Khlestkina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khlestkina, E.K., Salina, E.A., Matthies, I.E. et al. Comparative molecular marker-based genetic mapping of flavanone 3-hydroxylase genes in wheat, rye and barley. Euphytica 179, 333–341 (2011). https://doi.org/10.1007/s10681-010-0337-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-010-0337-2

Keywords

Navigation