Skip to main content
Log in

Diversity of white and narrow-leafed lupin genotype adaptive response across climatically-contrasting Italian environments and implications for selection

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

White lupin (Lupinus albus) and narrow-leafed lupin (L. angustifolius) have special interest as high-protein feed crops but their cultivation is limited by low grain yields. This study aimed to support breeding programs targeting Italy or other climatically variable south-European regions by investigating within-species adaptation patterns across contrasting Italian environments. An additional aim was comparing species for yielding ability. Eight narrow-leafed and six white lupin cultivars featuring different origin, phenological type (Mediterranean in both species; winter in white lupin; spring in narrow-leafed lupin) and plant architecture (determinate or indeterminate in both species; tall or dwarf in white lupin) were evaluated in a Mediterranean and a subcontinental-climate site under autumn and late-winter sowing. Additive main effects and multiplicative interaction was preferable to joint regression for modeling yield responses. In both species, cross-over GE interaction was observed (P < 0.05), autumn-sown Mediterranean and subcontinental environments were the most-contrasting for GE effects, and widely adapted material included cultivars of Mediterranean phenological type with indeterminate growth. Material with determinate growth was not among the best-yielding entries in any environment, whereas a dwarf winter-type white lupin entry was specifically adapted to autumn-sown subcontinental environments. White lupin displayed larger genetic variation than narrow-leafed lupin for phenology and other traits. Relationships of morphophysiological traits with grain yield were environment-specific and were locally high for some white lupin traits (early flowering, long reproductive phase, high aerial biomass, low proportion of pod wall). White lupin exhibited higher yielding ability than narrow-leafed lupin in all environments but the late-winter sown Mediterranean one, when comparing locally top-yielding cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari KN, Galwey NW, Dracup M (2001) The genetic control of highly restricted branching in narrow-leafed lupin (Lupinus angustifolius L.). Euphytica 117:261–274. doi:10.1023/A:1026571416075

    Article  CAS  Google Scholar 

  • Annicchiarico P (1997) Joint regression vs. AMMI analysis of genotype–environment interactions for cereals in Italy. Euphytica 94:53–62. doi:10.1023/A:1002954824178

    Article  Google Scholar 

  • Annicchiarico P, Iannucci A (2007) Winter survival of pea, faba bean and white lupin cultivars across contrasting Italian locations and sowing times, and implications for selection. J Agric Sci 145:611–622. doi:10.1017/S0021859607007289

    Article  Google Scholar 

  • Annicchiarico P, Iannucci A (2008) Breeding strategy for faba bean in southern Europe based on cultivar responses across climatically-contrasting environments. Crop Sci 48:983–991. doi:10.2135/cropsci2007.09.0501

    Article  Google Scholar 

  • Annicchiarico P, Bellah F, Chiari T (2006) Repeatable genotype × location interaction and its exploitation by conventional and GIS-based cultivar recommendation for durum wheat in Algeria. Eur J Agron 24:70–81. doi:10.1016/j.eja.2005.05.003

    Article  Google Scholar 

  • Arnoldi A (2005) Optimized processes for preparing healthy and added value food ingredients from lupin kernels, the European protein-rich grain legume. Aracne, Rome

    Google Scholar 

  • Buirchell BJ, Cowling WA (1998) Genetic resources of lupins. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CABI, Wallingford, pp 41–66

    Google Scholar 

  • Carrouée B, Crépon K, Peyronnet C (2003) Les protéagineux: intérêt dans les systèmes de production fourragers français et européens. Fourrages 174:163–182

    Google Scholar 

  • Clements JC, Dracup M, Buirchell BJ, Smith CG (2005) Variation for seed coat and pod wall percentage and other traits in a germplasm collection and historical cultivars of lupin. Aust J Agric Res 56:75–83. doi:10.1071/AR03114

    Article  Google Scholar 

  • Colombini S, Annicchiarico P, Odoardi M (2004) Resa proteica di alcune varietà di pisello, fava e lupino nell’Italia settentrionale. Inf Agr 60(39):73–75

    Google Scholar 

  • Crinò P, Saccardo F (2008) Cece e lupino italiani ancora una risorsa. Inf Agr 64(17):47–49

    Google Scholar 

  • Dracup M, Turner NC, Tang C, Reader M, Palta J (1998) Responses to abiotic stresses. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CABI, Wallingford, pp 385–409

    Google Scholar 

  • Dronne Y (2003) L’approvisionnement en protéines de la France dans son contexte européen et mondial. Fourrages 174:107–128

    Google Scholar 

  • Fagnano M, Bozzini A (2001) Lupino (Lupinus albus L.). In: Ranalli P (ed) Leguminose e agricoltura sostenibile—specie da granella e cover crops. Calderini Edagricole, Bologna, pp 591–614

    Google Scholar 

  • Finlay KW, Wilkinson GN (1963) The analysis of adaptation in a plant-breeding programme. Aust J Agric Res 14:742–754. doi:10.1071/AR9630742

    Article  Google Scholar 

  • French RJ, Buirchell BJ (2005) Lupin: the largest grain legume crop in western Australia, its adaptation and improvement through plant breeding. Aust J Agric Res 56:1169–1180. doi:10.1071/AR05088

    Article  Google Scholar 

  • Froidmont E, Bartiaux-Thill N (2004) Suitability of lupin and pea seeds as a substitute for soybean mean in high-producing dairy cow feed. Anim Res 53:475–487. doi:10.1051/animres:2004034

    Article  CAS  Google Scholar 

  • Galwey NW, Adhikari K, Dracup M, Thomson R (2003) Agronomic potential of genetically diverse narrow-leafed lupins (Lupinus angustifolius L.) with restricted branching. Aust J Agric Res 54:649–661. doi:10.1071/AR02192

    Article  Google Scholar 

  • Gauch HG (1992) Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier, Amsterdam

    Google Scholar 

  • Gauch HG, Zobel RW (1997) Identifying mega-environments and targeting genotypes. Crop Sci 37:311–326

    Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. Wiley, New York

    Google Scholar 

  • Harzic N, Huyghe C, Papineau J (1995) Dry matter accumulation and seed yield of dwarf autumn-sown white lupin (Lupinus albus L.). Can J Plant Sci 75:549–555

    Google Scholar 

  • Harzic N, Huyghe C, Papineau J, Billot C, Esnault R, Deroo C (1996) Genotypic variation of seed yield and architectural traits in dwarf autumn-sown white lupin. Agronomie 16:309–316. doi:10.1051/agro:19960504

    Article  Google Scholar 

  • Huyghe C (1997) White lupin (Lupinus albus L.). Field Crops Res 53:147–160. doi:10.1016/S0378-4290(97)00028-2

    Article  Google Scholar 

  • Huyghe C, Papineau J (1990) Winter development of autumn-sown white lupin: agronomic and breeding consequences. Agronomie 10:709–716. doi:10.1051/agro:19900902

    Article  Google Scholar 

  • IRRI (2008) Cropstat for Windows Version 5. International Rice Research Institute, Los Baños, Philippines

  • Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186. doi:10.1023/A:1024189029226

    Article  CAS  Google Scholar 

  • Joernsgaard B, Christiansen JL, Kuptsov N 2004 Adaptation of lupins for northern European maritime conditions. In: Proceedings of 10th International Lupin Conference, Int. Lupin Assoc., Canterbury, NZ, pp 105–110

  • Julier B, Huyghe C, Papineau J, Milford GFJ, Day JM, Billot C, Mangin P (1993) Seed yield and yield stability of determinate and indeterminate autumn-sown white lupins (Lupinus albus) grown at different locations in France and UK. J Agric Sci Camb 121:177–186

    Article  Google Scholar 

  • Lagunes-Espinoza L, Huyghe C, Papineau J, Pacault D (1999) Effect of genotype and environment on pod wall proportion in white lupin: consequences to seed yield. Aust J Agric Res 50:575–582. doi:10.1071/A98151

    Article  Google Scholar 

  • Lopez-Bellido L, Fuentes M (1990) Growth, yield and yield components of lupin cultivars. Agron J 82:1050–1056

    Article  Google Scholar 

  • Metayer N (2004) Vicia faba breeding for sustainable agriculture in Europe—identification of regional priorities and definition of target genotypes. GIE Févérole, Paris

    Google Scholar 

  • Papineau J, Huyghe C (2004) Le lupin doux protéagineux. Editions France Agricole, Paris

    Google Scholar 

  • Perini L, Beltrano MC, Dal Monte G, Esposito S, Caruso T, Motisi A, Marra FP (2004) Atlante agroclimatico—agroclimatologia, pedologia, fenologia del territorio italiano. UCEA, Rome

    Google Scholar 

  • Perry MW, Dracup M, Nelson P, Jarvis R, Rowland I, French RJ (1998) Agronomy and farming systems. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CABI, Wallingford, pp 291–338

    Google Scholar 

  • Petterson DS (1998) Composition and food uses of lupin. In: Gladstones JS, Atkins C, Hamblin J (eds) Lupins as crop plants: biology, production and utilization. CABI, Wallingford, pp 353–384

    Google Scholar 

  • Piepho H-P (1995) Robustness of statistical tests for multiplicative terms in the additive main effects and multiplicative interaction model for cultivar trials. Theor Appl Genet 90:438–443

    Google Scholar 

  • SAS (1999) SAS/STAT User’s guide, Version 8. SAS Institute, Cary, NC

  • Siddique KHM, Walton GH, Seymour M (1993) A comparison of seed yields of winter grain legumes in western Australia. Aust J Exp Agric 33:915–922. doi:10.1071/EA9930915

    Article  Google Scholar 

  • Stoddard FL, Balko C, Erskine W, Khan HR, Link W, Sarker A (2006) Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147:167–186. doi:10.1007/s10681-006-4723-8

    Article  Google Scholar 

Download references

Acknowledgments

The work was carried out within the project “Increase of protein feed production” funded by the Ministry of Agricultural and Forestry Policies of Italy. We thank Sandro Proietti and Lino Fraschini for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Annicchiarico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annicchiarico, P., Carroni, A.M. Diversity of white and narrow-leafed lupin genotype adaptive response across climatically-contrasting Italian environments and implications for selection. Euphytica 166, 71–81 (2009). https://doi.org/10.1007/s10681-008-9836-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9836-9

Keywords

Navigation