Skip to main content
Log in

Assessment of techniques for screening alfalfa cultivars for aluminum tolerance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Screening toxicity tests are an effective method to characterize aluminum tolerant plants. In this paper, three screening procedures were used to assess aluminum tolerance among 13 cultivars of alfalfa (Medicago sativa L.). The procedures used were: Petri dish screening, black glass plot method and the soil-on-agar procedure. Major biological indices used to analyze aluminum tolerance were relative root length (RRL), relative germination rate (RGR), relative hypocotyl length (RHL), relative fresh weight (RFW) and root emergence (RE). Aluminum negatively affected all five indices. A Pearson correlation test indicated that the results of the three screening procedures were consistent, suggesting that all three could be used for screening purposes. However, because of the short test period and the simplicity of operation, the black glass plot method might be the best choice. Overall, cv. Super No. 7 and WL-525HQ were the most aluminum-tolerant alfalfa cultivars, while Pondus S was the most sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baluška F, Cvrčková F, Jones J, Volkmann D (2001) Sink plasmodesmata as gateways for phloem unloading, Myosin VIII and Calreticulin as molecular determinants of sink strength? Plant Physiol 126:39–46. doi:10.1104/pp.126.1.39

    Article  PubMed  Google Scholar 

  • Bouton JH (1996) Screening the alfalfa core collection for acid soil tolerance. Crop Sci 36:198–200

    Google Scholar 

  • Bouton JH, Radclinffe DE (1989) Effects of acid soil selection on agronomically important traits in alfalfa. In: Proceedings of XVI international grassland congress, Nice, France, 4–11 October 1989. Curle Printing Co., Inc., Minneapolis, pp 377–378

  • Bouton JH, Summer ME (1983) Alfalfa, Medicago sativa L, in highly weathered soils. V, Field performance of alfalfa selected for acid tolerance. Plant Soil 74:431–436. doi:10.1007/BF02181360

    Article  CAS  Google Scholar 

  • Buss GR, Lutz JA Jr, Hawkins GW (1975) Yield response of alfalfa cultivars and clones to several pH levels in Tatum subsoil. Agron J 67:331–334

    Google Scholar 

  • Campbell TA, Elgin JH, Foy CD, Mc JE, Murtrey VIII (1988) Selection in alfalfa for tolerance to toxic levels of aluminum. Can J Plant Sci 68:743–753

    Article  CAS  Google Scholar 

  • Cao HF, Gao JX, Shu JM (1992) Study on the response of Pinus massoniana seedling to aluminium. Acta Ecol Sin 12:239–246

    Google Scholar 

  • Clarkson DT (1965) The effect of aluminium and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot (Lond) 29:309–315

    Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed  CAS  Google Scholar 

  • Delhaize E, Stuart C, Colin DB, Robin JB, Vidya CJ, Peter JR (1993) Aluminum tolerance in wheat (Triticum aestivum L.) (I. Uptake and distribution of aluminum in root apices). Plant Physiol 103:685–693

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto HI (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254. doi:10.1073/pnas.0406258101

    Article  PubMed  CAS  Google Scholar 

  • Foy CD (1976) General principles involved in screening plants for aluminum and manganese tolerance. In: Wright MJ (ed) Plant adaptation to mineral stress in problem soils. New York State College of Agriculture and Life Science. Cornell University, Ithaca, pp 255–267

    Google Scholar 

  • Foy CD (1984) Physiological effects of hydrogen, aluminum, and manganese toxicity in acid soil. In: Adams F (ed) Soil acidity and liming, Agronomy no. 12, 2nd edn. Am Soc Agron, Madison, pp 57–98

  • Foy CD (1988) Plant adaptation to acid, aluminum toxic soils. Commun Soil Sci Plant Anal 19:959–987

    Article  CAS  Google Scholar 

  • Fuente de la JM, Verenice RR, José LCP, Luis HE (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568. doi:10.1126/science.276.5318.1566

    Google Scholar 

  • Gong XH, Gao SX (2003) Cd-error by adsorption of filter paper. J Guizhou Univ (Natural Science) 20:314–315

    Google Scholar 

  • Hang A (1984) Molecular aspects of aluminum toxicity. CRC Crit Rev Plant Genet 1(4):345–373

    Google Scholar 

  • Jones DL, Kochain LV (1995) Aluminum inhibition of the inositol 1, 4, 5-Triphosphate signal tranduction pathway in wheat roots: a role in aluminum toxicity? Plant Cell 7:1913–1922

    Article  PubMed  CAS  Google Scholar 

  • Hartel WA, Bouton JH (1989) Rhizobium meliloti inoculation of alfalfa selected for tolerance to acid, aluminum-rich soils. Plant Soil 116:283–285. doi:10.1007/BF02214560

    Article  CAS  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation? Plant Physiol 122:945–956. doi:10.1104/pp.122.3.945

    Article  PubMed  CAS  Google Scholar 

  • Lazof DB, Goldsmith JG, Ruffy TW, Linton RW (1994) Rapid uptake of aluminum into cells of intact soybean root tips. A microanalytical study using secondary ion mass spectrometry. Plant Physiol 106:1107–1114

    PubMed  CAS  Google Scholar 

  • Léon V, Rabier J, Notonier R, Barthlémy R, Moreau X, Madjèbi SB et al (2005) Effects of three nickel salts on geminating seeds of Grevillea exul var rubiginosa, an endemic Serpentine Proteaceae. Ann Bot (Lond) 95:609–618. doi:10.1093/aob/mci066

    Article  CAS  Google Scholar 

  • Liu K, Luan S (2001) Internal aluminum block of plant inward K+ channels. Plant Cell 13:1453–1465

    Article  PubMed  CAS  Google Scholar 

  • MacDiarmid CW, Gardner RC (1998) Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion. J Biol Chem 273:1727–1732. doi:10.1074/jbc.273.3.1727

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Zheng SJ, Li XF, Takeda K, Matsumoto H (1997) A rapid hydroponic screening for aluminium tolerance in barley. Plant Soil 191:133–137. doi:10.1023/A:1004257711952

    Article  CAS  Google Scholar 

  • Miyake K (1916) The toxic action of soluble aluminum salts upon the growth of the rice plant. J Biol Chem 25:23–28

    CAS  Google Scholar 

  • Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminum tolerance in snapbeans. Root exudation of citric acid. Plant Physiol 96:737–743

    Article  PubMed  CAS  Google Scholar 

  • Parrot WA, Bouton JH (1990) Aluminum tolerance in alfalfa as expressed in tissue culture. Plant Soil 191:133–137

    Google Scholar 

  • Silva IR, Smyth TJ, Raper CD, Carter TE, Rufty TW (2001) Differential aluminum tolerance in soybean: an evaluation of organic acid. Physiol Plant 112:200–210. doi:10.1034/j.1399-3054.2001.1120208.x

    Article  PubMed  CAS  Google Scholar 

  • Sivaguru M, Frantisek B, Dieter V, Hubert HF, Walter JH (1999) Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol 119:1073–1082. doi:10.1104/pp.119.3.1073

    Article  PubMed  CAS  Google Scholar 

  • Taylor GJ, Stephens JLM, Hunter DB, Bertsch PM, Rengel DEZ, Reid RJ (2000) Direct measurement of aluminum uptake and distribution in single cell of Chara corallina. Plant Physiol 123:987–996. doi:10.1104/pp.123.3.987

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye M, Stephen JT, Deborah LA, Carroll PV, Deborah AS (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844. doi:10.1104/pp.127.4.1836

    Article  PubMed  CAS  Google Scholar 

  • Van Wambeke A (1976) Formation, distribution and consequence of acid soils in agricultural development. In: Wright MJ (ed) Plant adaptation to mineral stress I problem soils. Cornell University Press, Ithaca, pp 15–24

    Google Scholar 

  • Voigt PW, Staley TE (2004) Selection for aluminum and acid-soil resistance in white clover. Crop Sci 44:38–48

    CAS  Google Scholar 

  • Voigt PW, Morris DR, Godwin HW (1997) A soil-on-agar method to evaluate acid-soil resistance in white clover. Crop Sci 37:1493–1496

    Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72. doi:10.1104/pp.128.1.63

    Article  PubMed  CAS  Google Scholar 

  • Ying XF, Liu PX, Gen D, Lu QD, Zhu SL (2005) Screening of soybean genotypes with tolerance to aluminum toxicity and study of the screening indicex. Chin J Oil Crop Sci 27:46–51

    Google Scholar 

  • Zheng SJ, Ma JF, Matsumoto H (1998) High aluminum resistance in buckwheat. I. Al-induced specific secretion of Oxalic acid from root tips. Plant Physiol 117:745–751. doi:10.1104/pp.117.3.745

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the project of National Key Basice Research and Development (2002 CB410804) and Planned Science and Technology Project of Zhejiang Province (2007C13063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, XB., Zhu, C. & Cheng, C. Assessment of techniques for screening alfalfa cultivars for aluminum tolerance. Euphytica 164, 541–549 (2008). https://doi.org/10.1007/s10681-008-9751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9751-0

Keywords

Navigation