Skip to main content
Log in

Impact of dense genetic marker maps on plant population genetic studies

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Recent work and publications in human population genetics involving very dense SNP datasets suggest that the use of these markers will become common in plant breeding. The experience of human geneticists futher suggests that attention will need to be paid to the very high degree of genomic heterogeneity of population genetic measures such as genetic diversity. Dense marker sets will also allow more precision of estimates of relatedness between individual plants or pure-breeding lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Literature Cited

  • Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD, Nickerson DA, Kruglyak L (2004) Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biology 2:1591–1599

    Article  CAS  Google Scholar 

  • Ayres KL, Overall ADJ (1999) Allowing for within-subpopulation inbreeding in forensic match probabilities. Forensic Sci Int 103:207–216

    Article  Google Scholar 

  • Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SE, Drake JA, Rhodes M, Reich DE, Hirschhorn JN (2004) Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet 74:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Buckler ES IV, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res 77:213–218

    Google Scholar 

  • Curie-Cohen M (1982) Estimates of inbreeding in a natural population: a comparison of sampling properties. Genetics 100:339–358

    PubMed  CAS  Google Scholar 

  • Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232

    Article  PubMed  CAS  Google Scholar 

  • Evett IW, Weir BS (1998) Interpreting DNA Evidence. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Hepler AB (2005) Improving forensic identification using Bayesian networks and relatedness estimation. Ph.D. Thesis, North Carolina State University, Raleigh, NC

  • Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG, Frazer KA, Cox DR (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307:1072–1079

    Article  PubMed  CAS  Google Scholar 

  • International HapMap Consortium (2003) The International HapMap project. Nature 426:789–796

    Article  Google Scholar 

  • International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320

    Article  Google Scholar 

  • Ke XY, Hunt S, Tapper W, Lawrence R, Stavrides G, Ghori J, Whittaker P, Collins A, Morris AP, Bently D, Cardon LR, Deloukas P (2004) The impact of SNP density on fine-scale patterns of linkage disequilibrium. Hum Mol Genet 13:577–588

    Article  PubMed  CAS  Google Scholar 

  • McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:1231–1241

    PubMed  CAS  Google Scholar 

  • Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167

    PubMed  Google Scholar 

  • Ordon F, Ahlemeyer J, Werner K, Köhler W, Friedt W (2005) Molecular assessment of genetic diversity in winter barley and its use in breeding. Euphytica 146:21–28

    Article  CAS  Google Scholar 

  • Palsson A, Rouse A, Riley-Berger R, Dworkin I, Gibson G (2004) Nucleotide variation in the Egfr locus of Drosophila melanogaster. Genetics 167:1199–1212

    Article  PubMed  CAS  Google Scholar 

  • Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 35:235–254

    Article  PubMed  CAS  Google Scholar 

  • Weir BS (1996) Genetic Data Analysis II. Sinauer Associates, Sunderland MA

    Google Scholar 

  • Weir BS (2003) Forensics. In: Balding DJ, Bishop M, Cannings C (eds) Handbook Stat Genet. Wiley, New York, pp 830–852

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weir BS, Cardon LR, Anderson AD, Nielsen DM, Hill WG (2005) Measures of human population structure show heterogeneity among genomic regions. Genome Res 15:1468–1476

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Hill WG (2002) Estimating F-statistics. Annu Rev Genet 36:721–750

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Hill WG, Cardon LR (2004) Allelic association patterns for a dense SNP map. Genet Epidemiol 27:442–450

    Article  PubMed  CAS  Google Scholar 

  • Yoon CK (1993) Botanical witness for the prosecution. Science 260:894–895

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Weir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weir, B.S. Impact of dense genetic marker maps on plant population genetic studies. Euphytica 154, 355–364 (2007). https://doi.org/10.1007/s10681-006-9283-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9283-4

Keywords

Navigation