Skip to main content
Log in

Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Biotic and abiotic stresses cause significant yield losses in legumes and can significantly affect their productivity. Biotechnology tools such as marker-assisted breeding, tissue culture, in vitro mutagenesis and genetic transformation can contribute to solve or reduce some of these constraints. However, only limited success has been achieved so far. The emergence of “omic” technologies and the establishment of model legume plants such as Medicago truncatula and Lotus japonicus are promising strategies for understanding the molecular genetic basis of stress resistance, which is an important bottleneck for molecular breeding. Understanding the mechanisms that regulate the expression of stress-related genes is a fundamental issue in plant biology and will be necessary for the genetic improvement of legumes. In this review, we describe the current status of biotechnology approaches in relation to biotic and abiotic stresses in legumes and how these useful tools could be used to improve resistance to important constraints affecting legume crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrell, J., P. Anderson, W. Oleszek, A. Stochmal & C. Agrell, 2004. Combined effects of elevated CO2 and herbivore damage on alfalfa and cotton. J Chem Ecol 30: 2309–2324.

    CAS  PubMed  Google Scholar 

  • Ahmed, H.U., C.C. Mundt, M.E. Hoffer & S.M. Coakley, 1996. Selective influence of wheat cultivars on pathogenicity of Mycosphaerella graminicola (Anamorph Septoria tritici). Phytopathology 86: 454–458.

    Google Scholar 

  • Alonso, J.M., 2003. Genome–Wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 1849–1849.

    CAS  Google Scholar 

  • Anand, R.P., A. Ganapathi, G. Vengadesan, N. Selvaraj, V.R. Anbazhagan & S. Kulothungan, 2001. Plant regeneration from immature cotyledon-derived callus of Vigna unguiculata (L.) Walp (cowpea). Curr Sci 80: 671–674.

    CAS  Google Scholar 

  • Anderson, J.P., L.F. Thatcher & K.B. Singh, 2005. Plant defence responses: Conservation between models and crops. Funct Plant Biol 32: 21–34.

    CAS  Google Scholar 

  • Anderson, K.L., L. Buchwaldt, G. Chongo, B.D. Gossen, R.A.A. Morrall & P.G. Pearse, 2000. Diseases of lentil in Saskatchewan 1999. Can Plant Dis Surv 80: 96–98.

    Google Scholar 

  • Apse, M.P. & E. Blumwald, 2002. Engineering salt tolerance in plants. Curr Opin Biotechnol 13: 146–150.

    CAS  PubMed  Google Scholar 

  • Apse, M.P., G.S. Aharon, W.A. Snedden & E. Blumwald, 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285: 1256–1258.

    CAS  PubMed  Google Scholar 

  • Aragão, F.J.L., S.G. Ribeiro, L.M.G. Barros, A.C.M. Brasileiro, D.P. Maxwell, E.L. Rech & J.C. Faria, 1998. Transgenic beans (Phaseolus vulgaris L.) engineered to express viral antisense RNAs show delayed and attenuated symptoms to bean golden mosaic geminivirus. Mol Breed 4: 491–499.

    Google Scholar 

  • Aragão, F.J.L., G.R. Vianna, M.M.C. Albino & E.L. Rech, 2002. Transgenic dry bean tolerant to the herbicide glufosinate ammonium. Crop Sci 42: 1298–1302.

    Google Scholar 

  • Arrus, K., G. Blank, D. Abramson, R. Clear & R.A. Holley, 2005. Aflatoxin production by Aspergillus flavus in Brazil nuts. J Stored Prod Res 41: 513–527.

    CAS  Google Scholar 

  • Arumugam, N., A. Mukhopadhyay, V. Gupta, Y.S. Sodhi, J.K. Verma, D. Pental & A.K. Pradhan, 2002. Synthesis of somatic hybrids (RCBB) by fusing heat-tolerant Raphanus sativus (RR) and Brassica oleracea (CC) with Brassica nigra (BB). Plant Breed 121: 168–170.

    Google Scholar 

  • Asai, T., G. Tena, J. Plotnikova, M.R. Willmann, W.L. Chiu, L. Gomez-Gomez, T. Boller, F.M. Ausubel & J. Sheen, 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977–983.

    CAS  PubMed  Google Scholar 

  • Asamizu, E., Y. Nakamura, S. Sato & S. Tabata, 2004. Characteristics of the Lotus japonicus gene repertoire deduced from large-scale expressed sequence tag (EST) analysis. Plant Mol Biol 54: 405–414.

    PubMed  Google Scholar 

  • Avila, C.M., J.C. Sillero, D. Rubiales, M.T. Moreno & A.M. Torres, 2003. Identification of RAPD markers linked to the Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theor Appl Genet 107: 353–358.

    CAS  PubMed  Google Scholar 

  • Babu, R.M., A. Sajeena, K. Seetharaman & M.S. Reddy, 2003. Advances in genetically engineered (transgenic) plants in pest management—An over view. Crop Prot 22: 1071–1086.

    Google Scholar 

  • Baldridge, G.D., N.R. O’Neill & D.A. Samac, 1998. Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Mol Biol 38: 999–1010.

    CAS  PubMed  Google Scholar 

  • Baulcombe, D., 2004. RNA silencing in plants. Nature 431: 356–363.

    CAS  PubMed  Google Scholar 

  • Bayaa, B. & W. Erskine, 1998. Diseases of lentil. In: D.J. Allen & L.M. Lenné (Eds.), The Pathology of Food and Pasture Legumes, pp 423–472. CAB International, Wallingford, UK.

    Google Scholar 

  • Bayaa, B., W. Erskine & M. Singh, 1997. Screening lentil for resistance to fusarium wilt: methodology and sources of resistance. Euphytica 98: 69–74.

    Google Scholar 

  • Bayliss, K.L., J.M. Wroth & W.A. Cowling, 2004. Pro-embryos of Lupinus spp. produced from isolated microspore culture. Aust J Agric Res 55: 589–593.

    Google Scholar 

  • Bell, C.J., R.A. Dixon, A.D. Farmer, R. Flores, J. Inman, R.A. Gonzales, M.J. Harrison, N.L. Paiva, A.D. Scott, J.W. Weller & G.D. May, 2001. The Medicago Genome Initiative: a model legume database. Nucl Acids Res 29: 114–117.

    CAS  PubMed  Google Scholar 

  • Bhagwat, B. & E.J. Duncan, 1998. Mutation breeding of banana cv. Highgate (Musa spp., AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Sci Hort 73: 11–22.

    CAS  Google Scholar 

  • Blount, J.W., R.A. Dixon & N.L. Paiva, 1992. Stress responses in alfalfa (Medicago sativa L). Antifungal activity of medicarpin and its biosynthetic precursors - Implications for the genetic manipulation of stress metabolites. Physiol Mol Plant Pathol 41: 333–349.

    CAS  Google Scholar 

  • Boisson-Dernier, A., M. Chabaud, F. Garcia, G. Becard, C. Rosenberg & D.G. Barker, 2001. Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14: 695–700.

    CAS  PubMed  Google Scholar 

  • BorejszaWysocki, W., E. BorejszaWysocka & G. Hrazdina, 1997. Pisatin metabolism in pea (Pisum sativum L) cell suspension cultures. Plant Cell Rep 16: 304–309.

    CAS  Google Scholar 

  • Boukar, O., L. Kong, B.B. Singh, L. Murdock & H.W. Ohm, 2004. AFLP and AFLP-derived SCAR markers associated with Striga gesnerioides resistance in cowpea. Crop Sci 44: 1259–1264.

    CAS  Google Scholar 

  • Bradshaw, J.E., D.J. Gemmell & R.N. Wilson, 1997. Transfer of resistance to clubroot (Plasmodiophora brassicae) to swedes (Brassica napus L var napobrassica Peterm) from B. rapa. Ann Appl Biol 130: 337–348.

    Google Scholar 

  • Bretag, T.W. & M. Ramsey, 2001. Foliar diseases caused by fungi: Ascochyta spp. In: J.M Kraft & F.L. Pfleger (Ed), Compendium of Pea Disease and Pests, 2nd ed., pp. 24–28. The American Phytopathological Society (APS) Press, St. Paul, MN.

    Google Scholar 

  • Brewer, E.P., J.A. Saunders, J.S. Angle, R.L. Chaney & M.S. McIntosh, 1999. Somatic hybridization between the zinc accumulator Thlaspi caerulescens and Brassica napus. Theor Appl Genet 99: 761–771.

    CAS  Google Scholar 

  • Britt, A.B. & G.D. May, 2003. Re-engineering plant gene targeting. Trends Plant Sci 8: 90–95.

    CAS  PubMed  Google Scholar 

  • Cánovas, F., E. Dumas-Gaudot, G. Recorbet, J. Jorrin, H.-P. Mock & M. Rossignol, 2004. Plant proteome analysis. Proteomics 4: 285–298.

    PubMed  Google Scholar 

  • Cardoso, M.B., E. Kaltchuk-Santos, E.C. de Mundstock & M.H. Bodanese-Zanettini, 2004. Initial segmentation patterns of microspores and pollen viability in soybean cultured anthers: Indication of chromosome doubling. Braz Arch Biol Technol 47: 703–712.

    Google Scholar 

  • Carmona, M.A., M.E. Gally & S.E. Lopez, 2005. Asian soybean rust: Incidence, severity, and morphological characterization of Phakopsora pachyrhizi (uredinia and telia) in Argentina. Plant Dis 89: 109–109.

    Google Scholar 

  • Castillejo, M.A., N. Amiour, E. Dumas-Gaudot, D. Rubiales & J.V. Jorrin, 2004. A proteomic approach to studying plant response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum). Phytochemistry 65: 1817–1828.

    Google Scholar 

  • Chakraborty, U., B. Sarkar & B.N. Chakraborty, 2003. Protection of soybean rot by Bradyrhizobium japonicum and Trichoderma harzianum associated with changes in enzyme activities and phytoalexin production. J Mycol Plant Pathol 33: 21–25.

    CAS  Google Scholar 

  • Chandra, A. & D. Pental, 2003. Regeneration and genetic transformation of grain legumes: An overview. Curr Sci 84: 381–387.

    Google Scholar 

  • Chen, W.Q., N.J. Provart, J. Glazebrook, F. Katagiri, H.S. Chang, T. Eulgem, F. Mauch, S. Luan, G.Z. Zou, S.A. Whitham, P.R. Budworth, Y. Tao, Z.Y. Xie, X. Chen, S. Lam, J.A. Kreps, J.F. Harper, A. Si-Ammour, B. Mauch-Mani, M. Heinlein, K. Kobayashi, T. Hohn, J.L. Dangl, X. Wang & T. Zhu, 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14: 559–574.

    CAS  PubMed  Google Scholar 

  • Chen, W.Q. & K.B. Singh, 1999. The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19: 667–677.

    CAS  PubMed  Google Scholar 

  • Chimphango, S.B.M., C.F. Musil & F.D. Dakora, 2003. Effects of UV-B radiation on plant growth, symbiotic function and concentration of metabolites in three tropical grain legumes. Funct Plant Biol 30: 309–318.

    CAS  Google Scholar 

  • Chintapalli, P.L., J.P. Moss, K.K. Sharma & J.K. Bhalla, 1997. In vitro culture provides additional variation for pigeonpea Cajanus cajan (L) Millsp crop improvement. In Vitro Cell Dev Biol-Plant 33: 30–37.

    Google Scholar 

  • Cho, S.H., W.D. Chen & F.J. Muehlbauer, 2004. Pathotype-specific genetic factors in chickpea (Cicer arietinum L.) for quantitative resistance to ascochyta blight. Theor Appl Genet 109: 733–739.

    PubMed  Google Scholar 

  • Cho, S.H. & F.J. Muehlbauer, 2004. Genetic effect of differentially regulated fungal response genes on resistance to necrotrophic fungal pathogens in chickpea (Cicer arietinum L.). Physiol Mol Plant Pathol 64: 57–66.

    CAS  Google Scholar 

  • Cobos, M.J., M. Fernandez, J. Rubio, M. Kharrat, M.T. Moreno, J. Gil & T. Millan, 2005. A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: location of genes for resistance to fusarium wilt race 0. Theor Appl Genet 110: 1347–1353.

    CAS  PubMed  Google Scholar 

  • Colditz, F., O. Nyamsuren, K. Niehaus, H. Eubel, H.P. Braun & F. Krajinski, 2004. Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Mol Biol 55: 109–120.

    CAS  PubMed  Google Scholar 

  • Colebatch, G., G. Desbrosses, T. Ott, L. Krusell, O. Montanari, S. Kloska, J. Kopka & M.K. Udvardi, 2004. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus. Plant J 39: 487–512.

    PubMed  Google Scholar 

  • Constantin, G.D., B.N. Krath, S.A. MacFarlane, M. Nicolaisen, I.E. Johansen & O.S. Lund, 2004. Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40: 622–631.

    CAS  PubMed  Google Scholar 

  • Cook, D.R., 1999. Medicago truncatula—A model in the making! Commentary. Curr Opin Plant Biol 2: 301–304.

    CAS  PubMed  Google Scholar 

  • Correa, O.S., A. Aranda & A.J. Barneix, 2001. Effects of pH on growth and nodulation of two forage legumes. J Plant Nutr 24: 1367–1375.

    CAS  Google Scholar 

  • Coyne, D.P., J.R. Steadman, G. Godoy-Lutz, R. Gilbertson, E. Arnaud-Santana, J.S. Beaver & J.R. Myers, 2003. Contributions of the Bean/Cowpea CRSP to management of bean diseases. Field Crop Res 82: 155–168.

    Google Scholar 

  • Cucuzza, J.D. & J. Kao, 1986. Invitro assay of excised cotyledons of alfalfa (Medicago sativa) to screen for resistance to Colletotrichum trifolii. Plant Dis 70: 111–115.

    Google Scholar 

  • Cvikrova, M., P. Binarova, J. Eder & J. Nedelnik, 1992. Accumulation of phenolic-acids in filtrate-treated alfalfa cell-cultures derived from genotypes with different susceptibility to Fusarium oxysporum. J Plant Physiol 140: 21–27.

    CAS  Google Scholar 

  • Dalmay, T., A. Hamilton, E. Mueller & D.C. Baulcombe, 2000. Potato virus X amplicons in Arabidopsis mediate genetic and epigenetic gene silencing. Plant Cell 12: 369–379.

    CAS  PubMed  Google Scholar 

  • De Clercq, J., M. Zambre, M. Van Montagu, W. Dillen & G. Angenon, 2002. An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray. Plant Cell Rep 21: 333–340.

    CAS  Google Scholar 

  • de Sousa-Majer, M.J., N.C. Turner, D.C. Hardie, R.L. Morton, B. Lamont & T.J.V. Higgins, 2004. Response to water deficit and high temperature of transgenic peas (Pisum sativum L.) containing a seed-specific alpha- amylase inhibitor and the subsequent effects on pea weevil (Bruchus pisorum L.) survival. J Exp Bot 55: 497–505.

    Google Scholar 

  • Denman, S., P.S. Knoxdavies, F.J. Calitz & S.C. Lamprecht, 1995. Pathogenicity of Pythium irregulare, Pythium sylvaticum and Pythium ultimum var. ultimum to lucerne (Medicago sativa). Aust Plant Pathol 24: 137–143.

    Google Scholar 

  • Dennis, E.S., R. Dolferus, M. Ellis, M. Rahman, Y. Wu, F.U. Hoeren, A. Grover, K.P. Ismond, A.G. Good & W.J. Peacock, 2000. Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot 51: 89–97.

    CAS  PubMed  Google Scholar 

  • Desbrosses, G.G., J. Kopka & M.K. Udvardi, 2005. Lotus japonicus metabolic profiling. Development of gas chromatography-mass spectrometry resources for the study of plant-microbe interactions. Plant Physiol 137: 1302–1318.

    CAS  PubMed  Google Scholar 

  • Diatchenko, L., Y.F.C. Lau, A.P. Campbell, A. Chenchik, F. Moqadam, B. Huang, S. Lukyanov, K. Lukyanov, N. Gurskaya, E.D. Sverdlov & P.D. Siebert, 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93: 6025–6030.

    CAS  PubMed  Google Scholar 

  • Diers, B. 2004. Soybean genetic improvement through conventional and molecular based strategies. In 5th European Conference on Grain Legumes, Djion, France, 7–11 June, 2004; AEP, pp 147–148.

  • Dixon, R.A., 2001. Natural products and plant disease resistance. Nature 411: 843–847.

    CAS  PubMed  Google Scholar 

  • Dixon, R.A. & L.W. Sumner, 2003. Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol 131: 878–885.

    CAS  PubMed  Google Scholar 

  • Donaldson, P.A., T. Anderson, B.G. Lane, A.L. Davidson & D.H. Simmonds, 2001. Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum. Physiol Mol Plant Pathol 59: 297–307.

    CAS  Google Scholar 

  • du Preez, E.D., N.C. van Rij & K.F. Lawrance, 2005. First report of soybean rust caused by Phakopsora pachyrhizi on dry beans in South Africa. Plant Dis 89: 206–206.

    Google Scholar 

  • Dunwell, J.M., 2000. Crop genomics: progress and prospects. J Chem Technol Biotechnol 75: 913–918.

    CAS  Google Scholar 

  • Durieu, P. & S.J. Ochatt, 2000. Efficient intergeneric fusion of pea (Pisum sativum L.) and grass pea (Lathyrus sativus L.) protoplasts. J Exp Bot 51: 1237–1242.

    Google Scholar 

  • Dwivedi, B.S., M. Ram, B.P. Singh, M. Das & R.N. Prasad, 1992. Effect of liming on boron nutrition of pea (Pisum sativum L) and corn (Zea mays L) grown in sequence in an acid alfisol. Fertil Res 31: 257–262.

    CAS  Google Scholar 

  • Edwards, O. & K.B. Singh, 2006. Resistance to insect pests: What do legumes have to offer? Euphytica 147: 273–285.

    Google Scholar 

  • Eizenberg, H., J. Qolquhoun & C.A. Malory-Smith, 2004. The relationship between temperature and small broomrape (O. minor) parasitism in red clover (Trifolium pratense). Weed Sci 52:735–741.

    CAS  Google Scholar 

  • Eujayl, I., W. Erskine, M. Baum & E. Pehu, 1999. Inheritance and linkage analysis of frost injury in lentil. Crop Sci 39: 639–642.

    Google Scholar 

  • Eujayl, I., W. Erskine, B. Bayaa, M. Baum & E. Pehu, 1998. Fusarium vascular wilt in lentil: Inheritance and identification of DNA markers for resistance. Plant Breed 117: 497–499.

    Google Scholar 

  • Eulgem, T., 2005. Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10: 71–78.

    CAS  PubMed  Google Scholar 

  • Faleiro, F.G., V.A. Ragagnin, M.A. Moreira & E.G. de Barros, 2004. Use of molecular markers to accelerate the breeding of common bean lines resistant to rust and anthracnose. Breeding of common bean lines resistant to rust and anthracnose aided by molecular markers. Euphytica 138: 213–218.

    CAS  Google Scholar 

  • Fan, W.H. & X.N. Dong, 2002. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell 14: 1377–1389.

    CAS  PubMed  Google Scholar 

  • Fecht-Christoffers, M.M., H.P. Braun, C. Lemaitre-Guillier, A. VanDorsselaer & W.J. Horst, 2003. Effect of Manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133: 1935–1946.

    CAS  PubMed  Google Scholar 

  • Flowers, T.J., 2004. Improving crop salt tolerance. J Exp Bot 55: 307–319.

    CAS  PubMed  Google Scholar 

  • Foolad, M.R., 2004. Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult 76: 101–119.

    CAS  Google Scholar 

  • Ford, R., E.C.K. Pang & P.W.J. Taylor, 1999. Genetics of resistance to ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. Theor Appl Genet 98: 93–98.

    CAS  Google Scholar 

  • Fuller, M.P. & M.H.I. Eed 2003. The development of multiple stress-resistant cauliflower using mutagenesis in conjunction with a microshoot tissue culture technique. In XXVI International Horticultural Congress: Environmental Stress and Horticulture Crops, Toronto, Canada, 2003. Acta Hort 618: 71—76.

  • Gao, Z., S. Eyers, C. Thomas, N. Ellis & A. Maule, 2004. Identification of markers tightly linked to sbm recessive genes for resistance to Pea Seed-borne Mosaic Virus. Theor Appl Genet 109: 488–494.

    CAS  PubMed  Google Scholar 

  • Garza, R., C. Cardona & S.P. Singh, 1996. Inheritance of resistance to the bean-pod weevil (Apion godmani Wagner) in common beans from Mexico. Theor Appl Genet 92: 357–362.

    Google Scholar 

  • Gaunt, R.E., 1983. Shoot diseases caused by fungal pathogens. In: P.D. Hebblethwaite (Ed.), The Faba Bean, pp. 463–492. Butterworths, London.

    Google Scholar 

  • Gilchrist, E.J. & G.W. Haughn, 2005. TILLING without a plough: A new method with applications for reverse genetics. Curr Opin Plant Biol 8: 211–215.

    CAS  PubMed  Google Scholar 

  • Graham, P.H. & C.P. Vance, 2003. Legumes: Importance and constraints to greater use. Plant Physiol 131: 872–877.

    CAS  PubMed  Google Scholar 

  • Griga, M., J. Stejskal & K. Beber, 1995. Analysis of tissue culture-derived variation in pea (Pisum sativum L). Preliminary results. Euphytica 85: 335–339.

    Google Scholar 

  • Gulati, A., P. Schryer & A. McHughen, 2002. Production of fertile transgenic lentil (Lens culinaris Medik) plants using particle bombardment. In Vitro Cell Dev Biol-Plant 38: 316–324.

    CAS  Google Scholar 

  • Gygi, S.P. & R. Aebersold, 2000. Mass spectrometry and proteomics. Curr Opin Chem Biol 4: 489–494.

    CAS  PubMed  Google Scholar 

  • Gygi, S.P., Y. Rochon, B.R. Franza & R. Aebersold, 1999. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19: 1720–1730.

    CAS  PubMed  Google Scholar 

  • Hammett, K.R.W., B.G. Murray, K.R. Markham & I.C. Hallett, 1994. Interspecific hybridization between Lathyrus odoratus and L. belinensis. Int J Plant Sci 155: 763–771.

    Google Scholar 

  • Hamwieh, A., S.M. Udupa, W. Choumane, A. Sarker, F. Dreyer, C. Jung & M. Baum, 2005. A genetic linkage map of Lens sp based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theor Appl Genet 110: 669–677.

    CAS  PubMed  Google Scholar 

  • Handberg, K. & J. Stougaard, 1992. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2: 487–496.

    Google Scholar 

  • Hannon, G., 2002. Mechanisms and application of RNA interference. Biol Reprod 66: 70.

    Google Scholar 

  • Hanounik, S., 1980. Effect of chemical treatments and host genotypes on disease severity/yield relationships of Ascochyta blight in faba beans. FABIS Newsletter 2: 50

    Google Scholar 

  • Hanounik, S., 1981. Influence of Ronilan on the severity of chocolate spot and yield of faba bean. FABIS Newslett 3: 50–51

    Google Scholar 

  • Hanselle, T. & W. Barz, 2001. Purification and characterisation of the extracellular PR-2b beta-1,3-glucanase accumulating in different Ascochyta rabiei-infected chickpea (Cicer arietinum L.) cultivars. Plant Sci 161: 773–781.

    Google Scholar 

  • Hansen, L.N. & E.D. Earle, 1995. Transfer of resistance to Xanthomonas campestris pv. campestris into Brassica oleracea L. by protoplast fusion. Theor Appl Genet 91: 1293–1300.

    CAS  Google Scholar 

  • Hasegawa, P.M., R.A. Bressan, J.K. Zhu & H.J. Bohnert, 2000. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463–499.

    CAS  PubMed  Google Scholar 

  • He, X.Z. & R.A. Dixon, 2000. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4’-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12: 1689–1702.

    CAS  PubMed  Google Scholar 

  • Henikoff, S., B.J. Till & L. Comai, 2004. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135: 630–636.

    CAS  PubMed  Google Scholar 

  • Hipskind, J.D. & N.L. Paiva, 2000. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol Plant-Microbe Interact 13: 551–562.

    CAS  PubMed  Google Scholar 

  • Holbrook, C.C., D.M. Wilson, K.S. Rucker, C.K. Kvien & J.E. Hook, 1994. Possible role of drought tolerance in reducing aflatoxin contamination of peanut. Agronom Abstr 223.

  • Infantino, A., M. Kharrat, L. Riccioni1, C.J. Coyne, K.E. McPhee & N.J. Grünwald, 2006. Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica 147: 201–221.

    Google Scholar 

  • Ishitani, M., I. Rao, P. Wenzl, S. Beebe & J. Tohme, 2004. Integration of genomics approach with traditional breeding towards improving abiotic stress adaptation: Drought and aluminum toxicity as case studies. Field Crop Res 90: 35–45.

    Google Scholar 

  • Jain, A.K., S.M. Basha & C.C. Holbrook, 2001. Identification of drought-responsive transcripts in peanut (Arachis hypogaea L.). Eur J Biochem 4: 59–67.

    Google Scholar 

  • Jain, S.M., 2001. Tissue culture-derived variation in crop improvement. Euphytica 118: 153–166.

    CAS  Google Scholar 

  • Janila, P. & B. Sharma, 2004. RAPD and SCAR markers for powdery mildew resistance gene er in pea. Plant Breed 123: 271–274.

    CAS  Google Scholar 

  • Jayasena, K.W., M.R. Hajimorad, E.G. Law, A.U. Rehman, K.E. Nolan, T. Zanker, R.J. Rose & J.W. Randles, 2001. Resistance to Alfalfa mosaic virus in transgenic barrel medic lines containing the virus coat protein gene. Aust J Agric Res 52: 67–72.

    Google Scholar 

  • Jiang, D.H., X.J. Chen, K.L. Wu & Z.J. Guo, 2004. Expression of Cryptogein in tobacco plants exhibits enhanced disease resistance and tolerance to salt stress. Chin Sci Bull 49: 803–809.

    CAS  Google Scholar 

  • Jones, A.L., I.E. Johansen, S.J. Bean, I. Bach & A.J. Maule, 1998. Specificity of resistance to pea seed-borne mosaic potyvirus in transgenic peas expressing the viral replicase (NIb) gene. J Gen Virol 79: 3129–3137.

    CAS  PubMed  Google Scholar 

  • Jorrín, J.V., D. Rubiales, E. Dumas-Gaudot, G. Recorbet, A. Maldonado, M.A. Castillejo & M. Curto, 2006. Proteomics: a promising approach to study biotic interaction in legumes. A review. Euphytica 147: 37–47.

    Google Scholar 

  • Kahraman, A., I. Kusmenoglu, N. Aydin, A. Aydogan, W. Erskine & F.J. Muehlbauer, 2004. QTL mapping of winter hardiness genes in lentil. Crop Sci 44: 13–22.

    CAS  Google Scholar 

  • Kaimori, N., M. Senda, R. Ishikawa, S. Akada, T. Harada & M. Niizeki, 1998. Asymmetric somatic cell hybrids between alfalfa and birdsfoot trefoil. Breed Sci 48: 29–34.

    Google Scholar 

  • Kalo, P., A. Seres, S.A. Taylor, J. Jakab, Z. Kevei, A. Kereszt, G. Endre, T.H.N. Ellis & G.B. Kiss, 2004. Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272: 235–246.

    CAS  PubMed  Google Scholar 

  • Kappers, I.F., A. Aharoni, T. van Herpen, L.L.P. Luckerhoff, M. Dicke & H.J. Bouwmeester, 2005. Genetic engineering of terpenoid metabolism attracts, bodyguards to Arabidopsis. Science 309: 2070–2072.

    CAS  PubMed  Google Scholar 

  • Kassem, M.A., K. Meksem, C.H. Kang, V.N. Njiti, V. Kilo, A.J. Wood & D.A. Lightfoot, 2004. Loci underlying resistance to manganese toxicity mapped in a soybean recombinant inbred line population of ‘Essex’ x ‘Forrest’. Plant Soil 260: 197–204.

    CAS  Google Scholar 

  • Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki & K. Shinozaki, 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287–291.

    CAS  PubMed  Google Scholar 

  • Kato, T., S. Sato, Y. Nakamura, T. Kaneko, E. Asamizu & S. Tabata, 2003. Structural analysis of a Lotus japonicus genome. V. Sequence features and mapping of sixty-four TAC clones which cover the 6.4 Mb regions of the genome. DNA Res 10: 277–285.

    CAS  PubMed  Google Scholar 

  • Kav, N.N.V., S. Srivastava, L. Goonewardene & S.F. Blade, 2004. Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann Appl Biol 145: 217–230.

    CAS  Google Scholar 

  • Kelly, J.D., P. Gepts, P.N. Miklas & D.P. Coyne, 2003. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crop Res 82: 135–154.

    Google Scholar 

  • Kelly, J.D. & V.A. Vallejo, 2004. A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. Hortscience 39: 1196–1207.

    CAS  Google Scholar 

  • Khan, A.J., S. Hassan, M. Tariq & T. Khan, 2001. Haploidy breeding and mutagenesis for drought tolerance in wheat. Euphytica 120: 409–414.

    Google Scholar 

  • Kim, J.B., J.Y. Kang & S.Y. Kim, 2004. Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2: 459–466.

    CAS  Google Scholar 

  • Kim, S.T., K.S. Cho, S. Yu, S.G. Kim, J.C. Hong, C.-D. Han, D.W. Bae, M.H. Nam & K.Y. Kang, 2003. Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 3: 2368–2378.

    CAS  PubMed  Google Scholar 

  • Klingler, J., R. Creasy, L. Gao, R.M. Nair, C. Alonso-Suazo, H.S. Jacob, O.R. Edwards & K.B. Singh, 2005. Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137: 1445–1455.

    CAS  PubMed  Google Scholar 

  • Koike, M. & K. Nanbu, 1997. Phenylalanine ammonia-lyase activity in alfalfa suspension cultures treated with conidia and elicitors of Verticillium albo-atrum. Biol Plant 39: 349–353.

    CAS  Google Scholar 

  • Kolkman, J.M. & J.D. Kelly, 2003. QTL conferring resistance and avoidance to white mold in common bean. Crop Sci 43: 539–548.

    CAS  Google Scholar 

  • Koltai, H., M. Dhandaydham, C. Opperman, J. Thomas & D. Bird, 2001. Overlapping plant signal transduction pathways induced by a parasitic nematode and a rhizobial endosymbiont. Mol Plant-Microbe Interact 14: 1168–1177.

    CAS  PubMed  Google Scholar 

  • Kowalski, B. & A.C. Cassells, 1999. Mutation breeding for yield and Phytophthora infestans (Mont.) de Bary foliar resistance in potato (Solanum tuberosum L-cv. Golden Wonder) using computerized image analysis in selection. Potato Res 42: 121–130.

    Google Scholar 

  • Kulikova, O., G. Gualtieri, R. Geurts, D.J. Kim, D. Cook, T. Huguet, J.H. de Jong, P.F. Fransz & T. Bisseling, 2001. Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27: 49–58.

    CAS  PubMed  Google Scholar 

  • Laanbroek, H.J., 1990. Bacterial cycling of minerals that affect plant-growth in waterlogged soils: A review. Aqua Bot 38: 109–125.

    Google Scholar 

  • Larkin, P.J. & W.R. Scowcroft, 1981. Somaclonal variation - a novel source of variability from cell-cultures for plant Improvement. Theor Appl Genet 60: 197–214.

    Google Scholar 

  • Lazaridou, T.B., D.G. Roupakias & A.S. Economou, 1993. Embryo rescue in Vicia faba and Vicia narbonensis. Plant Cell Tissue Organ Cult 33: 297–301.

    Google Scholar 

  • Lebel, E., P. Heifetz, L. Thorne, S. Uknes, J. Ryals & E. Ward, 1998. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16: 223–233.

    CAS  PubMed  Google Scholar 

  • Lee, G.J., H.R. Boerma, M.R. Villagarcia, X. Zhou, T.E. Carter, Z. Li & M.O. Gibbs, 2004. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet 109: 1610–1619.

    CAS  PubMed  Google Scholar 

  • Li, H.Y., Y.M. Zhu, Q. Chen, R.L. Conner, X.D. Ding, J. Li & B.B. Zhang, 2004. Production of transgenic soybean plants with two anti-fungal protein genes via Agrobacterium and particle bombardment. Biol Plant 48: 367–374.

    CAS  Google Scholar 

  • Li, Y.D., Y.J. Wang, Y.P. Tong, J.G. Gao, J.S. Zhang & S.Y. Chen, 2005. QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.). Euphytica 142: 137–142.

    CAS  Google Scholar 

  • Li, Y.G., G.J. Tanner, A.C. Delves & P.J. Larkin, 1993. Asymmetric somatic hybrid plants between Medicago sativa L (Alfalfa, Lucerne) and Onobrychis viciifolia Scop (Sainfoin). Theor Appl Genet 87: 455–463.

    Google Scholar 

  • Liu, J.H., X.Y. Xu & X.X. Deng, 2005. Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tissue Organ Cult 82: 19–44.

    CAS  Google Scholar 

  • Liu, W.G., M.Y. Zheng, E.A. Polle & C.F. Konzak, 2002a. Highly efficient doubled-haploid production in wheat (Triticum aestivum L.) via induced microspore embryogenesis. Crop Sci 42: 686–692.

    Google Scholar 

  • Liu, Y.L., M. Schiff & S.P. Dinesh-Kumar, 2002b. Virus-induced gene silencing in tomato. Plant J 31: 777–786.

    CAS  Google Scholar 

  • Livingstone, D.M., J.L. Hampton, P.M. Phipps & E.A. Grabau, 2005. Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol 137: 1354–1362.

    CAS  PubMed  Google Scholar 

  • Lozovaya, V.V., A.V. Lygin, S. Li, G.L. Hartman & J.M. Widhohn, 2004. Biochemical response of soybean roots to Fusarium solani f. sp glycines infection. Crop Sci 44: 819–826.

    CAS  Google Scholar 

  • Magbanua, Z.V., H.D. Wilde, J.K. Roberts, K. Chowdhury, J. Abad, J.W. Moyer, H.Y. Wetzstein & W.A. Parrott, 2000. Field resistance to Tomato Spotted Wilt Virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleocapsid gene sequence. Mol Breed 6: 227–236.

    CAS  Google Scholar 

  • Mahmoud, A.L.E. & M.H. Abdalla, 1994. Natural occurrence of mycotoxins in broad bean (Vicia faba L.) seeds and their effect on Rhizobium-Legume symbiosis. Soil Biol. Biochem. 26: 1081–1085.

    CAS  Google Scholar 

  • Mallikarjuna, N. & J.P. Moss, 1995. Production of hybrids between Cajanus platycarpus and Cajanus cajan. Euphytica 83: 43–46.

    Google Scholar 

  • Martinez, V.A., W.G. Hill & S. Knott, 2002. On the use of double haploids for detecting QTL in outbred populations. Heredity 88: 423–431.

    CAS  PubMed  Google Scholar 

  • McCallum, C.M., L. Comai, E.A. Greene & S. Henikoff, 2000. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123: 439–442.

    CAS  PubMed  Google Scholar 

  • McDonald, G.K. & G. Dean, 1996. Effect of waterlogging on the severity of disease caused by Mycosphaerella pinodes in peas (Pisum sativum L). Aust J Exp Agric 36: 219–222.

    Google Scholar 

  • Merchan, F., C. Breda, J.P. Hormaeche, C. Sousa, A. Kondorosi, O.M. Aguilar, M. Megias & M. Crespi, 2003. A Kruppel-like transcription factor gene is involved in salt stress responses in Medicago spp. Plant Soil 257: 1–9.

    CAS  Google Scholar 

  • Miklas, P.N., D.P. Coyne, K.F. Grafton, N. Mutlu, J. Reiser, D.T. Lindgren & S.P. Singh, 2003. A major QTL for common bacterial blight resistance derives from the common bean great northern landrace cultivar Montana No. 5. Euphytica 131: 137–146.

    CAS  Google Scholar 

  • Miklas, P.N., W.C. Johnson, R. Delorme & P. Gepts, 2001. QTL conditioning physiological resistance and avoidance to white mold in dry bean. Crop Sci 41: 309–315.

    Google Scholar 

  • Mithofer, A., B. Muller, G. Wanner & L.A. Eichacker, 2002. Identification of defence-related cell wall proteins in Phytophthora sojae-infected soybean roots by ESI-MS/MS. Mol Plant Pathol 3: 163–166.

    CAS  Google Scholar 

  • Mithofer, A., B. Schulze & W. Boland, 2004. Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566: 1–5.

    CAS  PubMed  Google Scholar 

  • Morphew, R., R. Arndt, C. Lauter, M. Tesfaye, D. Samac & G. Temple, 2004. Characterization of altered metabolism in transgenic alfalfa overexpressing malate dehydrogenase to confer aluminum tolerance. Abstr Pap Am Chem Soc 227: 148.

    Google Scholar 

  • Murray, J.D., T.E. Michaels, C. Cardona, A.W. Schaafsma & K.P. Pauls, 2004. Quantitative trait loci for leafhopper (Empoasca fabae and Empoasca kraemeri) resistance and seed weight in the common bean. Plant Breed 123: 474–479.

    CAS  Google Scholar 

  • Mutlu, N., P. Miklas, J. Reiser & D. Coyne, 2005. Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.). Plant Breed 124: 282–287.

    Google Scholar 

  • Nakajo, S., M. Niizeki, T. Harada, R. Ishikawa & K. Saito, 1994. Somatic-ell hybridization in rice (Oryza sativa L.) and birdsfoot-trefoil (Lotus-Corniculatus L.). Breed Sci 44: 79–81.

    Google Scholar 

  • Narayanan, N.N., N. Baisakh, N.P. Oliva, C.M. VeraCruz, S.S. Gnanamanickam, K. Datta & S.K. Datta, 2004. Molecular breeding: marker-assisted selection combined with biolistic transformation for blast and bacterial blight resistance in Indica rice (cv. CO39). Mol Breed 14: 61–71.

    CAS  Google Scholar 

  • Narayanan, R.A., R. Atz, R. Denny, N.D. Young & D.A. Somers, 1999. Expression of soybean cyst nematode resistance in transgenic hairy roots of soybean. Crop Sci 39: 1680–1686.

    Google Scholar 

  • Navas-Cortés, J.A., B. Hau & R.M. Jimenez-Diaz, 2000. Yield loss in chickpeas in relation to development of Fusarium wilt epidemics. Phytopathology 90: 1269–1278.

    Google Scholar 

  • Nene, Y.L. & M.V. Reddy, 1987 Chickpea diseases and their control. In: M.C. Saxena & K.B. Singh (Eds). In the chickpea, pp. 233–270.CAB International, Oxon, UK.

    Google Scholar 

  • Nyamsuren, O., F. Colditz, S. Rosendahl, M. Tamasloukht, T. Bekel, F. Meyer, H. Kuester, P. Franken & F. Krajinski, 2003. Transcriptional profiling of Medicago truncatula roots after infection with Aphanomyces euteiches (oomycota) identifies novel genes upregulated during this pathogenic interaction. Physiol Mol Plant Pathol 63: 17–26.

    CAS  Google Scholar 

  • Onate-Sanchez, L. & K.B. Singh, 2002. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiol 128: 1313–1322.

    CAS  PubMed  Google Scholar 

  • Ormerod, A.J. & P.D.S. Caligari, 1994. Anther and microspore culture of Lupinus albus in liquid culture-medium. Plant Cell Tissue Organ Cult 36: 227–236.

    Google Scholar 

  • Ornatowski, W., J. Jayaraj, T.C. Todd, W.T. Schapaugh, S. Muthukrishnan & H.N. Trick, 2004. Introduction and constitutive expression of a tobacco hornworm (Manduca sexta) chitinase gene in soybean. In Vitro Cell Dev Biol-Plant 40: 260–265.

    CAS  Google Scholar 

  • Ouedraogo, J.T., J.B. Tignegre, M.P. Timko & F.J. Belzile, 2002. AFLP markers linked to resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome 45: 787–793.

    CAS  PubMed  Google Scholar 

  • Ozawa, R., T. Shimoda, M. Kawaguchi, G. Arimura, J. Horiuchi, T. Nishioka & J. Takabayashi, 2000. Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. J Plant Res 113: 427–433.

    Google Scholar 

  • Parker, C. & C.R. Riches, 1993. Parasitic weeds of the world: biology and control. CAB International, Wallingford, UK.

    Google Scholar 

  • Pedrosa, A., N. Sandal, J. Stougaard, D. Schweizer & A. Bachmair, 2002. Chromosomal map of the model legume Lotus japonicus. Genetics 161: 1661–1672.

    CAS  PubMed  Google Scholar 

  • Perry, J.A., T.L. Wang, T.J. Welham, S. Gardner, J.M. Pike, S. Yoshida & M. Parniske, 2003. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131: 866–871.

    CAS  PubMed  Google Scholar 

  • Pinheiro, C., J. Kehr & C.P. Ricardo, 2005. Effect of water stress on lupin stem protein analysed by two-dimensional gel electrophoresis. Planta 221: 716–728.

    CAS  PubMed  Google Scholar 

  • Pivonia, S. & X.B. Yang, 2004. Assessment of the potential year-round establishment of soybean rust throughout the world. Plant Dis 88: 523–529.

    Google Scholar 

  • Pnueli, L., E. Hallak-Herr, M. Rozenberg, M. Cohen, P. Goloubinoff, A. Kaplan & R. Mittler, 2002. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J 31: 319–330.

    CAS  PubMed  Google Scholar 

  • Popelka, J.C., N. Terryn & T.J.V. Higgins, 2004. Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Sci 167: 195–206.

    Google Scholar 

  • Poulain, D. & H. Almohammad, 1995. Effects of boron deficiency and toxicity on faba bean (Vicia faba L.). Eur J Agron 4: 127–134.

    Google Scholar 

  • Qian, Q., D.L. Zeng, P. He, X.W. Zheng, Y. Chen & L.H. Zhu, 2000. QTL analysis of the rice seedling cold tolerance in a double haploid population derived from anther culture of a hybrid between indica and japonica rice. Chin Sci Bull 45: 448–453.

    Google Scholar 

  • Rahman, M.H.H., Y. Arima, K. Watanabe & H. Sekimoto, 1999. Adequate range of boron nutrition is more restricted for root nodule development than for plant growth in young soybean plant. Soil Sci Plant Nutr 45: 287–296.

    CAS  Google Scholar 

  • Ramteke, R., G.K. Gupta & O.P. Joshi, 2004. Evaluation of rust resistance in soybean (Glycine max) under field condition. Indian J Agric Sci 74: 623–624.

    Google Scholar 

  • Rashid, K.Y. & C.C. Bernier, 1991. The effect of rust on yield of faba bean cultivars and slow rusting populations. Can J Plant Sci 71: 967–972.

    Google Scholar 

  • Reddy, A.R., K.V. Chaitanya & M. Vivekanandan, 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161: 1189–1202.

    CAS  Google Scholar 

  • Reddy, M.S.S., S.A. Ghabrial, C.T. Redmond, R.D. Dinkins & G.B. Collins, 2001. Resistance to Bean pod mottle virus in transgenic soybean lines expressing the capsid polyprotein. Phytopathology 91: 1238–1238.

    Google Scholar 

  • Repetto, O., G. Bestel-Corre, E. Dumas-Gaudot, G. Berta, V. Gianinazzi-Pearson & S. Gianinazzi, 2003. Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157: 555–567.

    CAS  Google Scholar 

  • Rispail, N. 2005. Molecular and metabolic characterisation of symbiotic interactions in Lotus japonicus PhD Thesis Institute of Grassland and Environmental Research (IGER), University of Wales, Aberystwyth.

  • Robatzek, S. & I.E. Somssich, 2002. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev16: 1139–1149.

    CAS  PubMed  Google Scholar 

  • Rodrigues, L.R., J.M.S. Oliveira, J.E.A. Mariath & M.H. Bodanese-Zanettini, 2005. Histology of embryogenic responses in soybean anther culture. Plant Cell Tissue Organ Cult 80: 129–137.

    Google Scholar 

  • Rodríguez-Conde, M.F., M.T. Moreno, J.I. Cubero & D. Rubiales, 2004. Characterization of the Orobanche-Medicago truncatula association for studying early stages of the parasite-host interaction. Weed Res 44: 218–223.

    Google Scholar 

  • Román, B., Z. Satovic, C.M. Avila, D. Rubiales, M.T. Moreno & A.M. Torres, 2003. Locating genes associated with Ascochyta fabae resistance in Vicia faba. Aust J Agric Res 54: 85–90.

    Google Scholar 

  • Román, B., A.M. Torres, D. Rubiales, J.I. Cubero & Z. Satovic, 2002. Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk.) resistance in faba bean (Vicia faba L.). Genome 45: 1057–1063.

    PubMed  Google Scholar 

  • Romero-Andreas, J., B.S. Yandell & F.A.L. Bliss, 1986. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition. Theor Appl Genet 72: 123–128.

    Google Scholar 

  • Rubiales, D., 2001. Parasitic plants: An increasing threat. Grain Legumes, 33: 10–11

    Google Scholar 

  • Rubiales, D., A.A. Emeran & J.C. Sillero, 2002. Rusts on legumes in Europe and North Africa. Grain Legumes, 37: 8–9.

    Google Scholar 

  • Rubiales, D. & A. Moral, 2004. Prehaustorial resistance against alfalfa rust (Uromyces striatus) in Medicago truncatula. Eur J Plant Pathol 110: 239–243.

    CAS  Google Scholar 

  • Rubiales, D., A. Pérez-de-Luque, J.C. Sillero, B. Román, M. Kharrat, S. Khalil, D.M. Joel & C. Riches, 2006. Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 147: 187–199.

    Google Scholar 

  • Sagan, M., T. Huguet & G. Duc, 1994. Phenotypic characterization and classification of nodulation mutants of pea (Pisum sativum L.). Plant Sci 100: 59–70.

    CAS  Google Scholar 

  • Salles, I.I., J.W. Blount, R.A. Dixon & K. Schubert, 2002. Phytoalexin induction and beta-1,3-glucanase activities in Colletotrichum trifolii infected leaves of alfalfa (Medicago sativa L.). Physiol Mol Plant Pathol 61: 89–101.

    CAS  Google Scholar 

  • Salzer, P., A. Bonanomi, K. Beyer, R. Vogeli-Lange, R.A. Aeschbacher, J. Lange, A. Wiemken, D. Kim, D.R. Cook & T. Boller, 2000. Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol Plant-Microbe Interact 13: 763–777.

    CAS  PubMed  Google Scholar 

  • Samac, D.A. & A.C. Smigocki, 2003. Expression of oryzacystatin I and II in alfalfa increases resistance to the root-lesion nematode. Phytopathology 93: 799–804.

    CAS  Google Scholar 

  • Samac, D.A., M. Tesfaye, M. Dornbusch, P. Saruul & S.J. Temple, 2004. A comparison of constitutive promoters for expression of transgenes in alfalfa (Medicago sativa). Transgen Res 13: 349–361.

    CAS  Google Scholar 

  • Samantaray, S., G.R. Rout & P. Das, 1999. In vitro selection and regeneration of zinc tolerant calli from Setaria italica L. Plant Sci 143: 201–209.

    CAS  Google Scholar 

  • Sanan-Mishra, N., X.H. Pham, S.K. Sopory & N. Tuteja, 2005. Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102: 509–514.

    CAS  PubMed  Google Scholar 

  • Sanyal, I., A.K. Singh, M. Kaushik & D.V. Amla, 2005. Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168: 1135–1146.

    CAS  Google Scholar 

  • Sarmah, B.K., A. Moore, W. Tate, L. Molvig, R.L. Morton, D.P. Rees, P. Chiaiese, M.J. Chrispeels, L.M. Tabe & T.J.V. Higgins, 2004. Transgenic chickpea seeds expressing high levels of a bean alpha-amylase inhibitor. Mol Breed 14: 73–82.

    CAS  Google Scholar 

  • Saunders, J. & N. O’Neill, 2004. The characterization of defense responses to fungal infection in alfalfa. BioControl 49: 715–728.

    CAS  Google Scholar 

  • Schauser, L., A. Roussis, J. Stiller & J. Stougaard, 1999. A plant regulator controlling development of symbiotic root nodules. Nature 402: 191–195.

    CAS  PubMed  Google Scholar 

  • Schena, M., D. Shalon, R.W. Davis & P.O. Brown, 1995. Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270: 467–470.

    CAS  PubMed  Google Scholar 

  • Schnabl, H., T.L. Mahaworasilpa, H.G.L. Coster & A. von Keller, 1998. Production of hybrid cells from single protoplasts of sunflower hypocotyl and broad bean guard cells by electrical fusion. Plant Cell Tissue Organ Cult 55: 59–62.

    Google Scholar 

  • Schneider, K.A., K.F. Grafton & J.D. Kelly, 2001. QTL analysis of resistance to fusarium root rot in bean. Crop Sci 41: 535–542.

    CAS  Google Scholar 

  • Schneider, K.A., M.E. Brothers & J.D. Kelly, 1997. Marker-assisted selection to improve drought resistance in common bean. Crop Sci 37: 51–60.

    CAS  Google Scholar 

  • Schröeder, H.E., S. Gollasch, A. Moore, L.M. Tabe, S. Craig, D.C. Hardie, M.J. Chrispeels, D. Spencer & T.J.V. Higgins, 1995. Bean alpha-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107: 1233–1239.

    PubMed  Google Scholar 

  • Sharma, H.C., 1995. How wide can a wide cross be? Euphytica 82: 43–64.

    Google Scholar 

  • Sharma, K.K. & M. Lavanya, 2002. Recent developments in transgenics for abiotic stress in legumes of the semi-arid tropics. JIRCAS Working Report: 61–73.

  • Shi, H.Z., B.H. Lee, S.J. Wu & J.K. Zhu, 2003. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21: 81–85.

    CAS  PubMed  Google Scholar 

  • Shimada, N., T. Akashi, T. Aoki & S. Ayabe, 2000. Induction of isoflavonoid pathway in the model legume Lotus japonicus: molecular characterization of enzymes involved in phytoalexin biosynthesis. Plant Sci 160: 37–47.

    Google Scholar 

  • Shinozaki, K. & K. Yamaguchi-Shinozaki, 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3: 217–223.

    CAS  PubMed  Google Scholar 

  • Shou, H.X., P. Bordallo, J.B. Fan, J.M. Yeakley, M. Bibikova, J. Sheen & K. Wang, 2004. Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci USA 101: 3298–3303.

    CAS  PubMed  Google Scholar 

  • Sillero, J.C., S. Fondevilla, J. Davidson, M.C. Vaz Patto, T.D. Warkentin, J. Thomas & D. Rubiales, 2006. Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147: 255–272.

    Google Scholar 

  • Singh, B.N., R.N. Mishra, P.K. Agarwal, M. Goswami, S. Nair, S.K. Sopory & M.K. Reddy, 2004. A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochem Biophys Res Commun 320: 523–530.

    CAS  PubMed  Google Scholar 

  • Singh, K.B., R.C. Foley & L. Onate-Sanchez, 2002. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5: 430–436.

    CAS  PubMed  Google Scholar 

  • Singh, S.P., 2001. Broadening the genetic base of common bean cultivars: A review. Crop Sci 41: 1659–1675.

    Google Scholar 

  • Singla-Pareek, S.L., M.K. Reddy & S.K. Sopory, 2003. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Natl Acad Sci USA 100: 14672–14677.

    CAS  PubMed  Google Scholar 

  • Sivamani, E., C.W. Brey, W.E. Dyer, L.E. Talbert & R.D. Qu, 2000. Resistance to wheat streak mosaic virus in transgenic wheat expressing the viral replicase (NIb) gene. Mol Breed 6: 469–477.

    CAS  Google Scholar 

  • Sledge, M.K., J.H. Bouton, M. Dall’Agnoll, W.A. Parrott & G. Kochert, 2002. Identification and confirmation of aluminum tolerance QTL in diploid Medicago sativa subsp. coerulea. Crop Sci 42: 1121–1128.

    CAS  Google Scholar 

  • Somers, D.A., D.A. Samac & P.M. Olhoft, 2003. Recent advances in legume transformation. Plant Physiol 131: 892–899.

    CAS  PubMed  Google Scholar 

  • Stavely, J.R., 2000. Pyramiding rust and viral resistance genes using traditional and marker techniques in common bean. Ann Rep Bean Imp Coop 43: 1–4.

    Google Scholar 

  • Stiller, J., L. Martirani, S. Tuppale, R.J. Chian, M. Chiurazzi & P.M. Gresshoff, 1997. High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J Exp Bot 48: 1357–1365.

    CAS  Google Scholar 

  • Stoddard, F.L., C. Balko, W. Erskine, H.R. Khan, W. Link & A. Sarker, 2006. Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes. Euphytica 147: 167–186.

    Google Scholar 

  • Stracke, S., S. Sato, N. Sandal, M. Koyama, T. Kaneko, S. Tabata & M. Parniske, 2004. Exploitation of colinear relationships between the genomes of Lotus japonicus, Pisum sativum and Arabidopsis thaliana, for positional cloning of a legume symbiosis gene. Theor Appl Gen 108: 442–449.

    CAS  Google Scholar 

  • Sumner, L.W., P. Mendes & R.A. Dixon, 2003. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 62: 817–836.

    CAS  PubMed  Google Scholar 

  • Surekha, C., M.R. Beena, A. Arundhati, P.K. Singh, R. Tuli, A. Dutta-Gupta & P.B. Kirti, 2005. Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Mill sp.) using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci 169: 1074–1080.

    CAS  Google Scholar 

  • Svabova, L. & A. Lebeda, 2005. In vitro selection for improved plant resistance to toxin- producing pathogens. J Phytopathol 153: 52–64.

    CAS  Google Scholar 

  • Sweetingham, M.W., Jones R.A.C. & A.G.P. Brown, 1998. Diseases and pests. In: J.S.Gladstones, C.A Pettersen D.S., C.A. Atkins and J. Hamblin (Eds.), Lupins as Crop Plants: Biology, Production and Utilization, pp. 263–290. CAB International, Wallingford, UK.

  • Tadege, M., P. Ratet & K.S. Mysore, 2005. Insertional mutagenesis: a Swiss army knife for functional genomics of Medicago truncatula. Trends Plant Sci 10: 229–235.

    CAS  PubMed  Google Scholar 

  • Takahashi, H., T. Takai & T. Matsumoto, 1992. Breeding of strawberry cultivars resistant to Alternaria black spot of strawberry. Resistant plants to Alternaria alternata strawberry pathotype selected from calliclones of strawberry cultivar Morioka-16. J Jpn Soc Hort Sci 61: 323–327.

    Google Scholar 

  • Tar’an, B., L. Buchwaldt, A. Tullu, S. Banniza, T.D. Warkentin & A. Vandenberg, 2003a. Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lens culinaris Medik). Euphytica 134: 223–230.

    CAS  Google Scholar 

  • Tar’an, B., T.E. Michaels & K.P. Pauls, 2001. Mapping genetic factors affecting the reaction to Xanthomonas axonopodis pv. phaseoli in Phaseolus vulgaris L. under field conditions. Genome 44: 1046–1056.

    CAS  Google Scholar 

  • Tar’an, B., T. Warkentin, D.J. Somers, D. Miranda, A. Vandenburg, S. Blade, S. Woods, D. Bing, A. Xue, D. DeKoeyer & G. Penner, 2003b. Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107: 1482–1491.

    CAS  Google Scholar 

  • Thakur, M., D.R. Sharma & S.K. Sharma, 2002. In vitro selection and regeneration of carnation (Dianthus caryophyllus L.) plants resistant to culture filtrate of Fusarium oxysporum f.sp dianthi. Plant Cell Rep 20: 825–828.

    Google Scholar 

  • Thoquet, P., M. Gherardi, E.P. Journet, A. Kereszt, J.M. Ane, J.M. Prosperi & T. Huguet, 2002. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2: 1.

    PubMed  Google Scholar 

  • Timmerman-Vaughan, G.M., M.D. Pither-Joyce, P.A. Cooper, A.C. Russell, D.S. Goulden, R. Butler & J.E. Grant, 2001. Partial resistance of transgenic peas to alfalfa mosaic virus under greenhouse and field conditions. Crop Sci 41: 846–853.

    CAS  Google Scholar 

  • Tivoli, B., A. Baranger, C.M. Avila, S. Banniza, M. Barbetti, W. Chen, J. Davidson, K. Lindeck, M. Kharrat, D. Rubiales, M. Sadiki, J.C. Sillero, M. Sweetingham & F.J. Muehlbauer, 2006. Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147: 223–253.

    Google Scholar 

  • Tonguc, M. & P.D. Griffiths, 2004. Transfer of powdery mildew resistance from Brassica carinata to Brassica oleracea through embryo rescue. Plant Breed 123: 587–589.

    Google Scholar 

  • Torregrosa, C., S. Cluzet, J. Fournier, T. Huguet, P. Gamas, J.M. Prosperi, M.T. Esquerre-Tugaye, B. Dumas & C. Jacquet, 2004. Cytological, genetic, and molecular analysis to characterize compatible and incompatible interactions between Medicago truncatula and Colletotrichum trifolii. Mol Plant-Microbe Interact 17: 909–920.

    CAS  PubMed  Google Scholar 

  • Torregrosa, C., B. Dumas, F. Krajinski, M.T. Esquerre-Tugaye & C. Jacquet, 2006. Transcriptomic approaches to unravel plant – Pathogen interactions in legumes. Euphytica 147: 25–36.

    Google Scholar 

  • Umezawa, T., K. Mizuno & T. Fujimura, 2002. Discrimination of genes expressed in response to the ionic or osmotic effect of salt stress in soybean with cDNA-AFLP. Plant Cell Environ 25: 1617–1625.

    CAS  Google Scholar 

  • Umezawa, T., R. Yoshida, K. Maruyama, K. Yamaguchi-Shinozaki & K. Shinozaki, 2004. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci USA 101: 17306–17311.

    CAS  PubMed  Google Scholar 

  • Valderrama, M.R., B. Roman, Z. Satovic, D. Rubiales, J.I. Cubero & A.M. Torres, 2004. Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res 44: 323–328.

    CAS  Google Scholar 

  • Van den Boogaart, T., A.J. Maule, J.W. Davies & G.P. Lomonossoff, 2004. Sources of target specificity associated with the recovery against Pea Seed-borne Mosaic Virus infection mediated by RNA silencing in pea. Mol Plant Pathol 5: 37–43.

    CAS  Google Scholar 

  • Van Hoorn, J.W., N. Katerji, A. Hamdy & M. Mastrorilli, 2001. Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agric Water Manage 51: 87–98.

    Google Scholar 

  • VanToai, T.T., S.K. St Martin, K. Chase, G. Boru, V. Schnipke, A.F. Schmitthenner & K.G. Lark, 2001. Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci 41: 1247–1252.

    Google Scholar 

  • Velculescu, V.E., L. Zhang, B. Vogelstein & K.W. Kinzler, 1995. Serial analysis of gene-expression. Science 270: 484–487.

    CAS  PubMed  Google Scholar 

  • Walker, D.R., J.N. All, R.M. McPherson, H.R. Boerma & W.A. Parrott, 2000. Field evaluation of soybean engineered with a synthetic cry1Ac transgene for resistance to corn earworm, soybean looper, velvetbean caterpillar (Lepidoptera: Noctuidae), and lesser cornstalk borer (Lepidoptera: Pyralidae). J Econ Entomol 93: 613–622.

    CAS  PubMed  Google Scholar 

  • Walker, D.R., J.M. Narvel, H.R. Boerma, J.N. All & W.A. Parrott, 2004. A QTL that enhances and broadens Bt insect resistance in soybean. Theor Appl Genet 109: 1051–1057.

    PubMed  Google Scholar 

  • Wang, H., S.F. Hwang, K.F. Chang, G.D. Turnbull & R.J. Howard, 2003. Suppression of important pea diseases by bacterial antagonists. Biocontrol 48: 447–460.

    Google Scholar 

  • Wang, X.Y., A.L. Eggenberger, F.W. Nutter & J.H. Hill, 2001. Pathogen-derived transgenic resistance to soybean mosaic virus in soybean. Mol Breed 8: 119–127.

    CAS  Google Scholar 

  • Webb, K.J., L. Skot, M.N. Nicholson, B. Jorgensen & S. Mizen, 2000. Mesorhizobium loti increases root-specific expression of a calcium-binding protein homologue identified by promoter tagging in Lotus japonicus. Mol Plant-Microbe Interact 13: 606–616.

    CAS  PubMed  Google Scholar 

  • Wu, Q.D. & H.D. VanEtten, 2004. Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Mol Plant-Microbe Interact 17: 798–804.

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K. & K. Shinozaki, 2005. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10: 88–94.

    CAS  PubMed  Google Scholar 

  • Yang, H., J.G. Boersma, M.P. You, B.J. Buirchell & M.W. Sweetingham, 2004. Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to anthracnose disease in narrow-leafed lupin (Lupinus angustifolius L.). Mol Breed 14: 145–151.

    CAS  Google Scholar 

  • Yang, H., M. Shankar, B.J. Buirchell, M.W. Sweetingham, C. Caminero & P.M.C. Smith, 2002. Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). Theor Appl Genet 105: 265–270.

    CAS  PubMed  Google Scholar 

  • Ye, G., D.L. McNeil & G.D. Hill, 2002. Breeding for resistance to lentil Ascochyta blight. Plant Breed 121: 185–191.

    Google Scholar 

  • Yoshida, M., S.E. Cowgill & J.A. Wightman, 1997. Roles of oxalic and malic acids in chickpea trichome exudate in host-plant resistant to Helicoverpa armigera. J Chem Ecol 23: 1195–1210.

    CAS  Google Scholar 

  • Yu, K.F., S.J. Park, B.L. Zhang, M. Haffner & V. Poysa, 2004. An SSR marker in the nitrate reductase gene of common bean is tightly linked to a major gene conferring resistance to common bacterial blight. Euphytica 138: 89–95.

    CAS  Google Scholar 

  • Yue, W., G.M. Xia, D.Y. Zhi & H.M. Chen, 2001. Transfer of salt tolerance from Aeleuropus littorulis sinensis to wheat (Triticum aestivum L.) via asymmetric somatic hybridization. Plant Sci 161: 259–266.

    CAS  Google Scholar 

  • Zagorska, N., B. Dimitrov, P. Gadeva & P. Robeva, 1997. Regeneration and characterization of plants obtained from anther cultures in Medicago sativa L. In Vitro Cell Dev Biol-Plant 33: 107–110.

    Google Scholar 

  • Zair, I., A. Chlyah, K. Sabounji, M. Tittahsen & H. Chlyah, 2003. Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell Tissue Organ Cult 73: 237–244.

    CAS  Google Scholar 

  • Zambre, M., A. Goossens, C. Cardona, M. Van Montagu, N. Terryn & G. Angenon, 2005. A reproducible genetic transformation system for cultivated Phaseolus acutifolius (tepary bean) and its use to assess the role of arcelins in resistance to the Mexican bean weevil. Theor Appl Genet 110: 914–924.

    CAS  PubMed  Google Scholar 

  • Zhang, H.X. & E. Blumwald, 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19: 765–768.

    CAS  PubMed  Google Scholar 

  • Zhang, H.X., J.N. Hodson, J.P. Williams & E. Blumwald, 2001. Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98: 12832–12836.

    CAS  PubMed  Google Scholar 

  • Zhang, X.H., W.Q. Zhong & J.M. Widholm, 2005. Expression of a fungal cyanamide hydratase in transgenic soybean detoxifies cyanamide in tissue culture and in planta to provide cyanamide resistance. J Plant Physiol 162: 1064–1073.

    CAS  PubMed  Google Scholar 

  • Zivy, M. & D. de Vienne, 2000. Proteomics: A link between genomics, genetics and physiology. Plant Mol Biol 44: 575–580.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Dita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dita, M.A., Rispail, N., Prats, E. et al. Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147, 1–24 (2006). https://doi.org/10.1007/s10681-006-6156-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-6156-9

Key Words

Navigation