Skip to main content
Log in

Inheritance mode of fruit traits in melon: Heterosis for fruit shape and its correlation with genetic distance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fruit quality traits were studied in 12 exotic accessions and their hybrids with a “Piel de Sapo” inodorus melon cultivar. The genetic relationships among these genotypes were assessed with 16 microsatellite markers, which agreed with the classification of Cucumis callosus, C. pubescens and C. trigonus as accessions within C. melo. There were very large differences between all the exotic accessions and “Piel de Sapo” genotype for fruit traits. When the hybrids were analysed, three different situations regarding mid parent heterosis were found, depending on the trait: no heterosis (soluble solid concentration), highly variable, from negative to positive (fruit weight and fruit diameter) and general positive heterosis (ovary shape, fruit length and fruit shape). Best parent heterosis for fruit shape was also common among hybrids. A highly significant correlation (r = 0.81) was detected between fruit shape and fruit length heterosis, suggesting that fruit shape heterosis is caused mainly by the enlargement of the fruit longitudinally. A highly significant correlation (r = 0.84) between heterosis for fruit shape and genetic distance, as estimated with microsatellites, was also found. These results, together with the previously reported observation that melon fruit shape is polygenic and highly heritable, makes the genetics of melon fruit shape a suitable system for dissecting the genetic and molecular basis of heterosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

HMP:

mid parent heterosis

HBP:

best parent heterosis

OS:

ovary shape

FW:

fruit weight

FD:

fruit diameter

FL:

fruit length

FS:

fruit shape

SSC:

soluble solid concentration

References

  • Abadia, J., M.L. Gomez-Guillamon, J. Cuartero & F. Nuez, 1985. Inheritance mode of melon fruit characters. Cucur Genet Coop Rep 8: 34–35.

    Google Scholar 

  • Akashi, Y., N. Fukunda, T. Wako, M. Masuda & K. Kato, 2002. Genetic variation and phylogenetic relationships in East and South Asian melons, Cucumis melo L., based on the analysis of five isozymes. Euphytica 125: 385–396.

    Article  Google Scholar 

  • Ali, M., L.O. Copeland, S.G. Elias & J.D. Kelly, 1995. Relationship between genetic distance and heterosis for yield and morphological traits in winter canola (Brassica napus L.). Theor Appl Genet 91: 118–121.

    Article  Google Scholar 

  • Allard, R.W., 1996. Genetic basis of the evolution of adaptedness in plants. Euphytica 92: 1–11.

    Article  Google Scholar 

  • Bruce, A.B., 1910. The Mendelian theory of heredity and the augmentation of vigour. Science 32: 627–928.

    Google Scholar 

  • Cerna, F.J., S.R. Cianzio, A. Rafalski, S. Tingey & D. Dyer, 1997. Relationship between seed yield heterosis and molecular marker heterozygosity in soybean. Theor Appl Genet 95: 460–467.

    Article  Google Scholar 

  • Chakravarthy, H.L., 1959. Monograph on Indian Cuccurbitaceae – Taxonomy and distribution. Rec Bot Surv India 17: 98–112.

    Google Scholar 

  • Cheres, M.T., J.F. Miller, J.M. Crane & S.J. Knapp, 2000. Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Theor Appl Genet 100: 889–894.

    Article  Google Scholar 

  • Chowdari, K.V., S.R. Venkatachalam, A.P. Davierwala, V.S. Gupta, P.K. Ranjekar & O.P. Govila, 1998. Hybrid performance and genetic distance as revealed by the (GATA)4 microsatellite and RAPD markers in pearl millet. Theor Appl Genet 97: 163–169.

    Article  Google Scholar 

  • Danin-Poleg, Y., N. Reis, G. Tzuri & N. Katzir, 2001. Development and characterisation of microsatellite markers in Cucumis. Theor Appl Genet 102: 61–72.

    Article  Google Scholar 

  • Dunnet, C.W., 1955. A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc 50: 1096–1121.

    Google Scholar 

  • Eduardo, I., P. Arús & A.J. Monforte, 2003. Development of a collection of Near Isogenic Lines (NILs) in melon. In: Proceedings of the Seventh International Congress of Plant Molecular Biology, 23–28 June, Barcelona, Spain.

  • Garcia-Mas, J., M. Oliver, H. Gómez-Paniagua & M.C. De Vicente, 2000. Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor Appl Genet 101: 860–864.

    Article  Google Scholar 

  • Hua, J.P., Y. Sing, W. Wu, C. Xu, S. Sun, S. Yu & Q. Zhang, 2003. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad USA 100: 2574–2579.

    Article  Google Scholar 

  • Hua, J.P., Y.Z. Xing, C.G. Xu, X.L. Sun, S.B. Yu & Q. Zhang, 2002. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162: 1885–1895.

    PubMed  Google Scholar 

  • Jeffrey, C., 1980. A review of the Cucurbitaceae. Bot J Linn Soc 81: 233–247.

    Google Scholar 

  • Jordan, D.R., Y. Tao, I.D. Godwin, R.G. Henzell, M. Cooper & C.L. McIntyre, 2003. Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106: 559–567.

    PubMed  Google Scholar 

  • Kirkbride, J.H., 1993. Biosystematic Monograph of the Genus Cucumis (Cucurbitaceae). Parkway Publishers, North Caroline, USA.

    Google Scholar 

  • Kitroongruang, N., W. Poo-Swang & S. Tokumasu, 1992. Evaluation of combining ability, heterosis and genetic variance for plant growth and fruit quality characteristics in Thai-melon (Cucumis melo L., var. acidulous Naud.). Sci Hortic 20: 79–87.

    Google Scholar 

  • Kumar, S., K. Tamura, I.B. Jakobsen & M. Nei, 2001. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics 17: 1244–1245.

    Article  PubMed  Google Scholar 

  • Li, Z.K., L.J. Luo, H.W. Mei, D.L. Wang, Q.Y. Shu, R. Tabien, D.B. Zhong, C.S. Ying, J.W. Stansel, G.S. Khush & A.H. Paterson, 2001. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158: 1737–1753.

    Google Scholar 

  • Li, Z.K., S.R.M. Pinson, W.D. Park, A.H. Paterson & J.W. Stansel, 1997. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145: 453–465.

    PubMed  Google Scholar 

  • Liu, J., J. Van Eck, B. Cong & S.D. Tanksley, 2002. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99: 13302–13306.

    Article  PubMed  Google Scholar 

  • Lu, H., J. Romero-Severson & R. Bernardo, 2003. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theor Appl Genet 107: 494–502.

    Article  PubMed  Google Scholar 

  • Manjarrez-Sandoval, P., T.E. Carter Jr., D.M. Webb & J.W. Burton, 1997. Heterosis in soybean and its prediction by genetic similarity measures. Crop Sci 37: 1443–1452.

    Google Scholar 

  • Melchinger, A.E., H.F. Utz, C.C. Schon, 1998. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149: 383–403.

    PubMed  Google Scholar 

  • Monforte, A.J., M.J. Asíns & E.A. Carbonell, 1997. Salt tolerance in Lycopersicon species. VI. Genotype-by-salinity interaction in quantitative trait loci detection: Constitutive and response QTLs. Theor Appl Genet 95: 706–713.

    Article  Google Scholar 

  • Monforte, A.J., E. Fridman, D. Zamir & S.D. Tanksley, 2001. Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102: 572–590.

    Article  Google Scholar 

  • Monforte, A.J., J. Garcia-Mas & P. Arús, 2003. Cucumis melo L. intraspecific classification based on microsatellite variation. Plant Breed 122: 153–157.

    Article  Google Scholar 

  • Monforte, A.J., M. Oliver, M.J. Gonzalo, J.M. Alvarez, R. Dolcet-Sanjuan & P. Arús, 2004. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108: 750–758.

    Article  PubMed  Google Scholar 

  • Monforte, A.J. & S.D. Tanksley, 2000. Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: Breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100: 471–479.

    Article  Google Scholar 

  • Morales, M., M. Luis Arteaga, J.M. Álvarez, R. Dolcet-Sanjuan, A. Monfort, P. Arús & J. Garcia-Mas, 2002. Marker saturation of the region around the gene conferring resistance to the melon necrotic spot carmovirus (MNSV) in melon. J Am Soc Hortic Sci 127: 540–544.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Am Nat 106: 283–292.

    Article  Google Scholar 

  • Parthasarathy, V.A. & C.N. Sambandam, 1980. Taxonomy of Cucumis callosus (Rottl.) Cogn. – the wild melon of India. Cucur Genet Coop Rep 3: 66–67.

    Google Scholar 

  • Périn, C., L.S. Hagen, N. Giovinazzo, D. Besombes, D. Dogimont & M. Pitrat, 2002. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genom 266: 933–941.

    Article  Google Scholar 

  • Pitrat, M. & H. Lecoq, 1980. Inheritance of resistance to cucumber mosaic virus transmission by Aphis gossypii in Cucumis melo. Phytopatology 70: 958–961.

    Google Scholar 

  • Pitrat, M., P. Hanelt & K. Hammer, 2000. Some comments on infraspecific classification of cultivars of melon. Acta Hortic 510: 29–36.

    Google Scholar 

  • Puchalski, J.T., R.W. Robinson & J.W. Shail, 1978. Comparative electrophoresis of isoenzymes of Cucumis species. Cucur Genet Coop Rep 1: 39.

    Google Scholar 

  • Schull, G.H., 1908. The composition of a field maize. Am Breeders' Assoc Rep 4: 296–301.

    Google Scholar 

  • Schultheis, J.R., W.R. Jester & N.J. Augostini, 2002. Screening melons for adaptability in North Carolina. In: J. Janick & A. Whipkey (Eds.), Trends in New Crops and New Uses, pp. 439–444. ASHS Press, Alexandria, VA.

    Google Scholar 

  • Soria, D., A.I. López-Sese & M.L. Gómez-Guillamón, 1996. Resistance mechanisms of Cucumis melo var. agrestis against Trialeurodes vaporariorum and their use to control a clopterovirus that causes a yellowing disease of melon. Plant Pathol 45: 761–766.

    Article  Google Scholar 

  • Stepansky, A., I. Kovalski & R. Perl-Treves, 1999. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217: 313–332.

    Article  Google Scholar 

  • Stuber, C.W., S.E. Lincoln, D.W. Wolff, T. Helentjaris & E.S. Lander, 1992. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823–839; Theor Appl Genet (1997) 95: 706–713.

    Google Scholar 

  • Tanksley, S.D., 1993. Mapping polygenes. Ann Rev Genet 27: 205–233.

    Article  PubMed  Google Scholar 

  • Tanksley, S.D. & S.R. McCouch, 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.

    Article  PubMed  Google Scholar 

  • Van der Knaap, E., Z.B. Lippman, S.D. Tanksley, 2002. Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet 104: 241–247.

    Article  PubMed  Google Scholar 

  • Xiao, J.H., J.M. Li, L.P. Yuan & S.D. Tanksley, 1995. Dominance the major genetic basis of the heterosis in rice as revealed by QTL analysis using molecular markers. Genetics 140: 745–754.

    PubMed  Google Scholar 

  • Xiao, J., J. Li, L. Yuan, S.R. McCouch & S.D. Tanksley, 1996. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet 92: 637–643.

    Article  Google Scholar 

  • Xiao, J., J. Li, S. Grandillo, S.N. Ahn, L. Yuan, S.D. Tanksley & S.R. McCouch, 1998. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150: 899–909.

    PubMed  Google Scholar 

  • Yu, S.B., J.X. Li, Y.F. Tan, Y.J. Gao, X.H. Li, Q. Zhang & M.A. Saghai Maroof, 1997. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94: 9226–9231.

    Article  PubMed  Google Scholar 

  • Zhang, Q., Y.J. Gaco, S.H. Yang, R.A. Ragab, M.A. Saghai Maroof & Z.B. Li, 1994. A diallele analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor Appl Genet 89: 185–192.

    Article  Google Scholar 

  • Zhihua, M., 1995. Heredity of main economic characteristics of the Cucumis melo. Acta Hortic 402: 66–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monforte Antonio José.

Rights and permissions

Reprints and permissions

About this article

Cite this article

José, M.A., Iban, E., Silvia, A. et al. Inheritance mode of fruit traits in melon: Heterosis for fruit shape and its correlation with genetic distance. Euphytica 144, 31–38 (2005). https://doi.org/10.1007/s10681-005-0201-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-0201-y

Key Words

Navigation