Skip to main content
Log in

Influence of hydrogeochemical processes and assessment of suitability for groundwater uses in Busan City, Korea

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This study was carried out to understand the hydrogeochemical processes of groundwater quality and groundwater use in the Suyeong District of Busan city, Korea. Groundwater samples were collected from 40 wells in February, 2010. The abundance of major cations concentration in groundwater is Na+ > Ca2+ > Mg2+> K+, while that of anions is Cl > HCO3  > SO4 2− > NO3  > F. According to hydrogeochemical facies, Ca (HCO3)2, Ca Cl2 and NaCl are the dominant groundwater types in this study area. Mechanism controlling the water chemistry (Gibbs) indicates that most of groundwater samples fall at rock-weathering dominance zone. The geochemical processes and temporal variation in groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals. According to water quality index (WQI) of the study area exhibits 8 % of the groundwater samples fall at the unsuitable zone for drinking purpose. The spatial distribution map of WQI shows the poor quality of the water decrease toward the southern part of the study area. The results of SAR, Na%, PI, RSC and MH show that majority of groundwater samples are suitable for domestic and agricultural purposes. By the hydrogeochemical analysis, aquifer rock weathering, seawater intrusion, sewer leakage are the dominant factors that determine the major ionic composition. The proper management plan is necessary to preserve valuable groundwater resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anithamary, I., Ramkumar, T., Venkatramanan, S. (2012). Application of statistical analysis for the hydrogeochemistry of saline groundwater in Kodiakarai, Tamilnadu, India. Journal of Coastal Research, 28, 89–98.

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). New York: American Public Health Association.

    Google Scholar 

  • Brindha, K., & Elango, L. (2012). Impact of tanning industries on groundwater quality near a metropolitan city in India. Water Resource Management, 26, 1747–1761.

    Article  Google Scholar 

  • Brindha, K., & Elango, L. (2013a). Soil and groundwater quality with reference to nitrate in a semiarid agricultural region. Arabian Journal of Geosciences. doi:10.1007/s12517-013-1100-5.

  • Brindha. K., & Elango, L. (2013b). Geochemistry of fluoride rich groundwater in a weathered granitic rock region, southern India. Water Quality, Exposure and Health. doi:10.1007/s12403-013-0096-0.

  • Brindha, K., Neena Vaman, K. V., Srinivasan, K, Sathis Babu, M., & Elango, L. (2013). Identification of surface water-groundwater interaction by hydrogeochemical indicators and assessing its suitability for drinking and irrigational purposes in Chennai, Southern India. Applied Water Science. doi:10.1007/s13201-013-0138-6.

  • Cederstorm, D. J. (1946). Genesis of groundwater in the coastal plain of Virginia. Environmental Geology, 41, 218–245.

    Google Scholar 

  • Chae, G. T., Yun, S. T., Choi, B. Y., Yu, S. Y., Jo, H. Y., Mayer, B., et al. (2008). Hydrochemistry of urban groundwater, Seoul, Korea: The impact of subway tunnels on groundwater quality. Journal of Contaminated Hydrology, 101, 42–52.

    Article  CAS  Google Scholar 

  • Chang, T. W., Kang, P. C., Park, S. H., Hwang, S. K., & Lee, D. W. (1983). The geological map of Busan and Gadeog (1:50,000). Korea Institute of Energy and Resources. 22.

  • Chung, S. Y., Kim, T. H., & Park, N. (2012). The influence of the surrounding groundwater by groundwater discharge from the subway tunnel at Suyeong district, Busan city. Journal of Soil and Groundwater Environment, 17, 28–36.

    Article  Google Scholar 

  • Craig, E., & Anderson, M. P. (1979). The effects of urbanization of ground water quality. A case study of ground water ecosystems. Environmental Conservation, 30, 104–130.

    Google Scholar 

  • Dar, I. A., Sankar, K., & Dar, M. A. (2011). Spatial assessment of groundwater quality in Mamundiyar basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 178, 437–447.

    Article  CAS  Google Scholar 

  • Domenico, P. A. (1972). Concepts and models in groundwater hydrology. New York: McGraw-Hill.

    Google Scholar 

  • Fisher, S. R., & Mullican, W. F. (1997). Hydrogeochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahua desert, Trans-Pecos, Texas, USA. Journal of Hydrogeology, 5, 4–16.

    Article  Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 1088–1090.

  • Gunduz, O., Simsek, C., & Hasozbek, A. (2009). Arsenic pollution in the groundwater of Simav Plain, Turkey: its impact on water quality and human health. Water, Air, and Soil pollution, 205, 43–62.

    Article  Google Scholar 

  • Gupta, S., Dandele, P. S., Verma, M. B., & Maithani, P. B. (2009). Geochemical assessment of groundwater around Macherla-Karempudi Area, Guntur District, Andhra Pradesh. Journal Geological Society of India, 73, 202–212.

    Article  CAS  Google Scholar 

  • Gupta, S. K., Gupta, R. C., Chhabra, S. K., Eskiocak, S., Gupta, A. B., & Gupta, R. (2008). Health issues related to N pollution in water and air. Current Science, 94, 1469–1477.

    CAS  Google Scholar 

  • Hosono, T., Ikawa, R., Shimada, J., Nakano, T., Saito, M., Onodera, S. I., et al. (2009). Human impacts on groundwater flow and contamination deduced by multiple isotopes in Seoul City, South Korea. Science of the Total Environments, 407, 3189–3197.

    Article  CAS  Google Scholar 

  • Kim, Y. Y. (2004). Analysis of hydrochemical processes controlling the urban groundwater system in Seoul area, Korea. Geoscience Journal, 8, 313–318.

    Article  Google Scholar 

  • Kim, H., & Chung, S. Y. (2011). Application of Multivariate statistical analysis for the evaluation of groundwater contamination characteristics at the Suyeong-gu of Busan city, Korea. Journal of the Geological Society of Korea, 47, 45–58.

    CAS  Google Scholar 

  • Kim, S. J., Hyun, Y., & Lee, K. K. (2005). Time series modeling for evaluation of groundwater discharge rates into an urban subway system. Geoscience Journal, 9, 15–22.

    Article  Google Scholar 

  • Kim, Y. Y., Lee, K. K., & Sung, I. H. (2001). Urbanization and the groundwater budget, metropolitan Seoul area, Korea. Hydrogeology Journal, 9, 401–412.

    Article  Google Scholar 

  • Kraiem, Z., Zouari, K., Chkir, N., & Agoune, A. (2013). Geochemical characteristics of arid shallow aquifers in Chott Djerid, south-western Tunisia. Journal of Hydro-environment Research, doi:10.1016/j.jher.2013.06.002.

  • Lermontov, A., Yokoyama, L., Lermontov, M., & Machado, M. A. S. (2009). River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. Ecological Indicators, 9, 1188–1197.

    Article  CAS  Google Scholar 

  • Liu, C. W., Jang, C. S., Chen, C. P., Lin, C. N., & Lou, K. L. (2008). Characterization of groundwater quality in Kinmen Island using multivariate analysis and geochemical modelling. Hydrological Processes, 22, 376–383.

    Article  CAS  Google Scholar 

  • Lloyd, J. W., & Heathcode, J. A. (1985). Nature inorganic hydrochemistry in relation to groundwater. New York: Oxford University Press.

    Google Scholar 

  • Madhavan, N., & Subramanian, V. (2006). Environmental impact assessment including evolution of fluoride and arsenic contamination process in groundwater and remediation of contaminated groundwater system. In: M. Thangarajan (Ed.), Sustainable development and mangement of groundwater reserve (pp. 128–155). New Delhi: Capital Publishing Company.

  • Mamatha, P., & Rao, S. M. (2009). Geochemistry of fluoride rich ground-water in Kolar and Tumkur Districts of Karnataka. Environmental Earth Sciences, 61, 131–142.

    Article  Google Scholar 

  • Miller, G. T. (1979). Living in the environment. Belmond, CA: Wadsworth Publishing Company.

    Google Scholar 

  • Mitra, B. K. (1998). Spatial and temporal variation of ground water quality in sand dune area of aomori prefecture in Japan. Paper number 062023, 2006 ASAE Annual Meeting.

  • Namibian, M. (2007). A new Water Quality Index for environmental contamination contributed by mineral processing: a case study of Amang (tin tailing) processing activity. Journal of Applied Sciences, 7, 2977–2987.

    Article  Google Scholar 

  • Ozcan, H., Ekinci, H., Baba, A., Kavdır, Y., Yuksel, O., & Yigini, Y. (2007). Assessment of the water quality of Troia for the multipurpose usages. Environmental Monitoring and Assessment, 130, 389–402.

    Article  Google Scholar 

  • Piper, A. M., (1953). Agraphic procedure I the geo-chemical interpretation of water analysis. USGS Groundwater Note no. 12.

  • Prasanna, M. V., Chidambaram, S., Senthil Kumar, G., Ramanathan, A. L., & Nainwal, H. C. (2011). Hydrogeochemical assessment of groundwater in Neyveli Basin, Cuddalore district, South India. Arabian Journal of Geosciences, 4, 319–330.

    Article  CAS  Google Scholar 

  • Ragunath, H. M. (1987). Groundwater (p. 563). New Delhi: Wiley Eastern Ltd.

    Google Scholar 

  • Rajesh, R., Brindha, K., Murugan, R., & Elango, L. (2012). Influence of hydrogeochemical processes on temporal changes in groundwater quality in a part of Nalgonda district, Andhra Pradesh, India. Environmental Earth Sciences, 65, 1203–1213.

    Article  CAS  Google Scholar 

  • Rajmohan, N., & Elango, L. (2004). Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environmental Geology, 46, 47–61.

    CAS  Google Scholar 

  • Ramkumar, T., Venkatramanan, S., Anithamary, I., & Ibrahim, S. (2011). Evaluation of hydrogeochemical parameters and quality assessment of the groundwater in Kottur blocks, Tiruvarur district, Tamilnadu, India. Arabian Journal of Geosciences, 6, 101–108.

    Article  Google Scholar 

  • Sadashivaiah, C., Ramakrishnaiah, C. R., & Ranganna, G. (2008). Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. International Journal of Environmental Research and Public Health, 5, 158–164.

    Article  CAS  Google Scholar 

  • Sajil Kumar, P. J., Elango, L., James, E. J. (2013). Assessment of hydrochemistry and groundwater quality in the coastal area of South Chennai, India. Arabian Journal of Geosciences. doi:10.1007/s12517-013-0940-3.

  • Sawyer, G. N., & McCarthy, D. L. (1967). Chemistry of sanitary engineers (2nd ed., p. 518). New York: McGraw Hill.

    Google Scholar 

  • Schoeller, H., (1965). Qualitative evaluation of groundwater resources. In: Methods and techniques of groundwater investigations and development. UNESCO, pp. 54–83.

  • Schoeller, H. (1967). Geochemistry of groundwater-an international guide for research and practice, Chapter 15 (pp. 1–18). Paris: UNESCO.

    Google Scholar 

  • Shim, B. Y., Chung, S. Y., Kim, H. J., & Sung, I. H. (2004). Intrinsic random function of order k-kriging of electrical resistivity data for estimating the extent of saltwater intrusion in a coastal aquifer system. Environmental Geology, 46, 533–541.

    Article  CAS  Google Scholar 

  • Shim, B. Y., Chung, S. Y., Kim, H. J., Sung, I. H., & Kim, B. W. (2002). Characteristics of Sea water intrusion using geostatistical analysis of geophysical surveys at the southeastern coastal area of Busan, Korea. Journal of Soil and Groundwater Environment, 7, 3–17.

    Google Scholar 

  • Simoes, F. S., Moreira, A. B., Bisinoti, M. C., Gimenez, S. M. N., & Yabe, M. J. S. (2008). Water Quality Index as a simple indicator of aquaculture effects on aquatic bodies. Ecological Indicators, 8, 476–484.

    Article  Google Scholar 

  • Singh, A. K., Mondal, G. C., Kumar, S., Singh, T. B., Tewary, B. K., & Sinha, A. (2008). Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environmental Geology, 54, 745–758.

    Article  CAS  Google Scholar 

  • Son, C. M, Lee, S. M., Kim, Y. K., Kim, S. W., Kim, H. S. (1978). The Geological Map of Dongrae and Weolnae (1:50,000). Korea Research Institute of Geoscience and Mineral Resources.

  • Srinivasamoorthy, K., Vasanthavigar, M., Vijayaraghavan, K., Sarathidasan, R., & Gopinath, S. (2011). Hydrochemistry of groundwater in a coastal region of Cuddalore district, Tamilnadu, India: Implication for quality assessment. Arabian Journal of Geosciences,. doi:10.1007/s12517-011-0351-2.

    Google Scholar 

  • Subramani, T., Rajmohan, N., & Elango, L. (2009). Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environmental Monitoring and Assessment doi:10.1007/s10661-009-0781-4.

  • Todd, D. K. (1980). Ground water hydrology (p. 535). New York: Wiley.

    Google Scholar 

  • Trusdell, A. H., & Jones, B. F. (1973). Wateq: A computer program for calculating chemical equilibria of natural waters. National Technical Information Service, VA, USA.

  • Umar, R., Ahmed, I., Alam, F., & Khan, M. M. (2009). Hydrochemical characteristics and seasonal variations in groundwater quality of an alluvial aquifer in parts of Central Ganga Plain, Western Uttar Pradesh, India. Environmental Geology, 58, 1295–1300.

    Article  CAS  Google Scholar 

  • USEPA. (2003). Human health toxicity values in super- fund risk assessments. OSWER Directive 9285.753. December 5, 2003.

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Anandhan, P., et al. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171, 595–609.

    Article  CAS  Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Ramkumar, T., Gnanachandrasamy, G., & Vasudevan, S. (2013). A multivariate statistical approaches on physicochemical characteristics of groundwater in and around Nagapatttinam district, Cauvery deltaic region of Tamil Nadu, India. Earth Science Research Journal, 17, 97–103.

    Google Scholar 

  • Venkatramanan, S., Ramkumar, T., & Anithamary, I. (2012). A statistical approach on hydrogeochemistry of groundwater in Muthupet coastal region, Tamilnadu, India. Carpathian Journal of Earth and Environmental Sciences, 7, 47–54.

    Google Scholar 

  • Vikas, C., Kushwaha, R. K., & Pandit, M. K. (2009). Hydrochemical status of groundwater in district Ajmer (NW India) with reference to fluoride distribution. Journal Geological Society of India, 73, 773–784.

    Article  CAS  Google Scholar 

  • WHO. (2004). Guidelines for drinking water quality V.1 Recommendations (p. 130). Switzerland: Geneva.

  • Wilcox, L. V. (1955). Classification and use of irrigation water. US Geol Dep Agri Arc, 969, 19.

    Google Scholar 

  • Younger, P., & Casey, V. (2003). A simple method for determining the suit- ability of brackish groundwaters for irrigation. Waterlines, 22, 11–13.

    Article  Google Scholar 

  • Zahid, A., Hassan, M. Q., Balke, K. D., Flegr, M., & Clark, D. W. (2008). Groundwater chemistry and occurrence of arsenic in the Meghna floodplain aquifer, southeastern Bangladesh. Environmental Geology, 54, 1247–1260.

    Article  CAS  Google Scholar 

  • Zhu, C., & Schwartz, W. (2011). Hydrogeochemical processes and controls on water quality and water management. Elements, 7, 169–174.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Research Grant of Pukyong National University (2014 Year). The manuscript was greatly benefited from the constructive comments of an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Venkatramanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, S.Y., Venkatramanan, S., Kim, T.H. et al. Influence of hydrogeochemical processes and assessment of suitability for groundwater uses in Busan City, Korea. Environ Dev Sustain 17, 423–441 (2015). https://doi.org/10.1007/s10668-014-9552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-014-9552-7

Keywords

Navigation