Skip to main content
Log in

Optimization and Modeling of Tetracycline Removal from Wastewater by Three-Dimensional Electrochemical System: Application of Response Surface Methodology and Least Squares Support Vector Machine

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

A three-dimensional electrochemical system was employed as an advanced treatment technology for treatment of tetracycline-containing wastewater. An initial tetracycline concentration of 20.17–100.23 mg/L, pH range of 2.43–9.18, and current density of 1.03–15.72 mA/cm2 were implemented for the optimization and modeling of the process within the framework of a three-factor, five-level Box–Wilson central composite design-based response surface methodology and least squares support vector machine. The results of statistics corroborated that three main effective factors and reactor performance were very well described by the second-order polynomial equation (coefficient of determination = 0.94, mean square error = 0.0042, root mean square error = 0.065, average absolute deviation = 2.51, and mean absolute error = 0.037). Under the optimal conditions introduced by the desirability function approach, 90.42 (± 2.3)%, 49.91 ± (8.4)% and 28.80 ± (16.70)% of tetracycline, chemical oxygen demand, and total organic carbon could be removed using the three-dimensional electrochemical process from wastewater. The findings of this study demonstrated that the three-dimensional electrochemical system was as an effective, simple, and economic process compared to other electrochemical systems that have been recently used for antibiotics removal and could be considered as a promising technology for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akyol, A., Can, O. T., Demirbas, E., & Kobya, M. (2013). A comparative study of electrocoagulation and electro-Fenton for treatment of wastewater from liquid organic fertilizer plant. Separation and Purification Technology, 112, 11–19.

    Article  CAS  Google Scholar 

  2. Arabloo, M., Ziaee, H., Lee, M., & Bahadori, A. (2015). Prediction of the properties of brines using least squares support vector machine (LS-SVM) computational strategy. Journal of the Taiwan Institute of Chemical Engineers, 50, 123–130.

    Article  CAS  Google Scholar 

  3. Asfaram, A., Ghaedi, M., Azqhandi, M. A., Goudarzi, A., & Dastkhoon, M. (2016). Statistical experimental design, least squares-support vector machine (LS-SVM) and artificial neural network (ANN) methods for modeling the facilitated adsorption of methylene blue dye. RSC Advances, 6(46), 40502–40516.

    Article  CAS  Google Scholar 

  4. Asfaram, A., Ghaedi, M., Azqhandi, M. H. A., Goudarzi, A., & Hajati, S. (2017). Ultrasound-assisted binary adsorption of dyes onto Mn@CuS/ZnS-NC-AC as a novel adsorbent: application of chemometrics for optimization and modeling. Journal of Industrial and Engineering Chemistry, 54, 377–388.

    Article  CAS  Google Scholar 

  5. Azqhandi, M. A., Ghaedi, M., Yousefi, F., & Jamshidi, M. (2017). Application of random forest, radial basis function neural networks and central composite design for modeling and/or optimization of the ultrasonic assisted adsorption of brilliant green on ZnS-NP-AC. Journal of Colloid and Interface Science, 505, 278–292.

    Article  CAS  Google Scholar 

  6. Azqhandi, M. H. A., Foroughi, M., & Yazdankish, E. (2019). A highly effective, recyclable, and novel host-guest nanocomposite for Triclosan removal: a comprehensive modeling and optimization-based adsorption study. Journal of Colloid and Interface Science, 551, 195–207.

    Article  CAS  Google Scholar 

  7. Balabin, R. M., & Lomakina, E. I. (2011). Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst, 136(8), 1703–1712.

    Article  CAS  Google Scholar 

  8. Behbahani, M., Moghaddam, M., & Arami, M. (2011). Techno-economical evaluation of fluoride removal by electrocoagulation process: optimization through response surface methodology. Desalination, 271(1), 209–218.

    Article  CAS  Google Scholar 

  9. Brillas, E., & Sirés, I. (2015). Electrochemical removal of pharmaceuticals from water streams: reactivity elucidation by mass spectrometry. TrAC Trends in Analytical Chemistry, 70, 112–121.

    Article  CAS  Google Scholar 

  10. Brinzila, C., Pacheco, M., Ciríaco, L., Ciobanu, R., & Lopes, A. (2012). Electrodegradation of tetracycline on BDD anode. Chemical Engineering Journal, 209, 54–61.

    Article  CAS  Google Scholar 

  11. Can, W., Yao-Kun, H., Qing, Z., & Min, J. (2014). Treatment of secondary effluent using a three-dimensional electrode system: COD removal, biotoxicity assessment, and disinfection effects. Chemical Engineering Journal, 243, 1–6.

    Article  CAS  Google Scholar 

  12. Choi, H.-D., Cho, J.-M., Baek, K., Yang, J.-S., & Lee, J.-Y. (2009). Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon. Journal of Hazardous Materials, 161(2), 1565–1568.

    Article  CAS  Google Scholar 

  13. Domínguez, J. R., González, T., Palo, P., & Sánchez-Martín, J. (2010). Anodic oxidation of ketoprofen on boron-doped diamond (BDD) electrodes. Role of operative parameters. Chemical Engineering Journal, 162(3), 1012–1018.

    Article  CAS  Google Scholar 

  14. Ekici, B. B. (2014). A least squares support vector machine model for prediction of the next day solar insolation for effective use of PV systems. Measurement, 50, 255–262.

    Article  Google Scholar 

  15. Guo, H., Jeong, K., Lim, J., Jo, J., Kim, Y. M., Park, J.-p., Kim, J. H., & Cho, K. H. (2015). Prediction of effluent concentration in a wastewater treatment plant using machine learning models. Journal of Environmental Sciences, 32, 90–101.

    Article  CAS  Google Scholar 

  16. Fabiańska, A., Białk-Bielińska, A., Stepnowski, P., Stolte, S., & Siedlecka, E. M. (2014). Electrochemical degradation of sulfonamides at BDD electrode: kinetics, reaction pathway and eco-toxicity evaluation. Journal of Hazardous Materials, 280, 579–587.

    Article  CAS  Google Scholar 

  17. Folens, K., Huysman, S., Van Hulle, S., & Du Laing, G. (2017). Chemical and economic optimization of the coagulation-flocculation process for silver removal and recovery from industrial wastewater. Separation and Purification Technology, 179, 145–151.

    Article  CAS  Google Scholar 

  18. Foroughi, M., Arezoomand, H. R. S., Rahmani, A. R., Asgari, G., Nematollahi, D., Yetilmezsoy, K., & Samarghandi, M. R. (2017). Electrodegradation of tetracycline using stainless steel net electrodes: screening of main effective parameters and interactions by means of a two-level factorial design. Korean Journal of Chemical Engineering, 34(11), 2299–3008.

    Article  CAS  Google Scholar 

  19. Foroughi, M., Rahmani, A. R., Asgari, G., Nematollahi, D., Yetilmezsoy, K., & Samarghandi, M. R. (2018). Optimization of a three-dimensional electrochemical system for tetracycline degradation using Box-Behnken design. Fresenius Environmental Bulletin, 27(3), 1914–1922.

    CAS  Google Scholar 

  20. Foroughi, M., Chavoshi, S., Bagheri, M., Yetilmezsoy, K., & Samadi, M. T. (2018). Alum-based sludge (AbS) recycling for turbidity removal in drinking water treatment: an insight into statistical, technical, and health-related standpoints. Journal of Material Cycles and Waste Management, 20(4), 1999–2017.

    Article  CAS  Google Scholar 

  21. Foroughi, M., Nasab, H. Z., Shokoohi, R., Azqhandi, M. H. A., Nadali, A., & Mazaheri, A. (2019). Ultrasound-assisted sorption of Pb(II) on multi-walled carbon nanotube in presence of natural organic matter: an insight into main and interaction effects using modelling approaches of RSM and BRT. RSC Advances, 9(28), 16083–16094.

    Article  CAS  Google Scholar 

  22. González, T., Domínguez, J. R., Palo, P., Sánchez-Martín, J., & Cuerda-Correa, E. M. (2011). Development and optimization of the BDD-electrochemical oxidation of the antibiotic trimethoprim in aqueous solution. Desalination, 280(1), 197–202.

    Google Scholar 

  23. Haidar, M., Dirany, A., Sirés, I., Oturan, N., & Oturan, M. A. (2013). Electrochemical degradation of the antibiotic sulfachloropyridazine by hydroxyl radicals generated at a BDD anode. Chemosphere, 91(9), 1304–1309.

    Article  CAS  Google Scholar 

  24. Hoffmann, M., DeMaio, W., Jordan, R. A., Talaat, R., Harper, D., Speth, J., & Scatina, J. (2007). Metabolism, excretion, and pharmacokinetics of [14C] tigecycline, a first-in-class glycylcycline antibiotic, after intravenous infusion to healthy male subjects. Drug Metabolism and Disposition, 35(9), 1543–1553.

    Article  CAS  Google Scholar 

  25. Hou, L., Zhang, H., & Xue, X. (2012). Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water. Separation and Purification Technology, 84, 147–152.

    Article  CAS  Google Scholar 

  26. Jung, K.-W., Hwang, M.-J., Park, D.-S., & Ahn, K.-H. (2015). Combining fluidized metal-impregnated granular activated carbon in three-dimensional electrocoagulation system: feasibility and optimization test of color and COD removal from real cotton textile wastewater. Separation and Purification Technology, 146, 154–167.

    Article  CAS  Google Scholar 

  27. Kakavandi, B., Takdastan, A., Jaafarzadeh, N., Azizi, M., Mirzaei, A., & Azari, A. (2016). Application of Fe3O4@ C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method. Journal of Photochemistry and Photobiology A: Chemistry, 314, 178–188.

    Article  CAS  Google Scholar 

  28. Kang, F., Li, J.-s., & Li, J.-j. (2016). System reliability analysis of slopes using least squares support vector machines with particle swarm optimization. Neurocomputing, 209, 46–56.

    Article  Google Scholar 

  29. Kaytez, F., Taplamacioglu, M. C., Cam, E., & Hardalac, F. (2015). Forecasting electricity consumption: a comparison of regression analysis, neural networks and least squares support vector machines. International Journal of Electrical Power & Energy Systems, 67, 431–438.

    Article  Google Scholar 

  30. Li, W.-W., Sheng, G.-P., Liu, X.-W., & Yu, H.-Q. (2011). Recent advances in the separators for microbial fuel cells. Bioresource Technology, 102(1), 244–252.

    Article  CAS  Google Scholar 

  31. Liu, F., Rotaru, A.-E., Shrestha, P. M., Malvankar, N. S., Nevin, K. P., & Lovley, D. R. (2012). Promoting direct interspecies electron transfer with activated carbon. Energy & Environmental Science, 5(10), 8982–8989.

    Article  CAS  Google Scholar 

  32. Mao, R., Zhao, X., Lan, H., Liu, H., & Qu, J. (2015). Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor. Water Research, 77, 1–12.

    Article  CAS  Google Scholar 

  33. Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin, K. C., Yamazaki, D. A. S., Bandoch, G. F. G., Asefa, T., Visentainer, J. V., & Almeida, V. C. (2015). Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: kinetic and equilibrium studies. Chemical Engineering Journal, 260, 291–299.

    Article  CAS  Google Scholar 

  34. Oladipo, A. A., Abureesh, M. A., & Gazi, M. (2016). Bifunctional composite from spent “Cyprus coffee” for tetracycline removal and phenol degradation: solar-Fenton process and artificial neural network. International Journal of Biological Macromolecules, 90, 89–99.

    Article  CAS  Google Scholar 

  35. Oturan, N., Wu, J., Zhang, H., Sharma, V. K., & Oturan, M. A. (2013). Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials. Applied Catalysis B: Environmental, 140, 92–97.

    Article  CAS  Google Scholar 

  36. Panja, P., Pathak, M., Velasco, R., & Deo, M. (2016). Least square support vector machine: an emerging tool for data analysis. In SPE Low Perm Symposium, Society of Petroleum Engineers.

    Google Scholar 

  37. Porhemmat, S., Ghaedi, M., Rezvani, A. R., Azqhandi, M. H. A., & Bazrafshan, A. A. (2017). Nanocomposites: synthesis, characterization and its application to removal azo dyes using ultrasonic assisted method: modeling and optimization. Ultrasonics Sonochemistry, 38, 530–543.

    Article  CAS  Google Scholar 

  38. Pulkka, S., Martikainen, M., Bhatnagar, A., & Sillanpää, M. (2014). Electrochemical methods for the removal of anionic contaminants from water – a review. Separation and Purification Technology, 132, 252–271.

    Article  CAS  Google Scholar 

  39. Rahmani, A. R., Foroughi, M., Noorimotlagh, Z., & Adabi, S. (2016). Hexavalent chromium adsorption onto fire clay. Avicenna Journal of Environmental Health Engineering, 3(1), 1–6.

    Article  CAS  Google Scholar 

  40. Rice, E. W., Bridgewater, L., & Association A. P. H. (2012). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association Washington, DC.

    Google Scholar 

  41. Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G., & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7), 1268–1287.

    Article  CAS  Google Scholar 

  42. Roosta, M., Ghaedi, M., Daneshfar, A., & Sahraei, R. (2014). Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122, 223–231.

    Article  CAS  Google Scholar 

  43. Saitoh, T., Shibata, K., & Hiraide, M. (2014). Rapid removal and photodegradation of tetracycline in water by surfactant-assisted coagulation–sedimentation method. Journal of Environmental Chemical Engineering, 2(3), 1852–1858.

    Article  CAS  Google Scholar 

  44. Särkkä, H., Bhatnagar, A., & Sillanpää, M. (2015). Recent developments of electro-oxidation in water treatment—a review. Journal of Electroanalytical Chemistry, 754, 46–56.

    Article  CAS  Google Scholar 

  45. Sengupta A. (2014). Remediation of tetracycline from water sources using vetiver grass (Chrysopogon zizanioides L. Nash) and tetracycline-tolerant root-associated bacteria. Ph.D. Thesis, Michigan Technological University, MI, USA.

  46. Singh, K. P., Basant, N., & Gupta, S. (2011). Support vector machines in water quality management. Analytica Chimica Acta, 703(2), 152–162.

    Article  CAS  Google Scholar 

  47. Souza, F. L., Sáez, C., Cañizares, P., Motheo, A. J., & Rodrigo, M. A. (2014). Coupling photo and sono technologies to improve efficiencies in conductive diamond electrochemical oxidation. Applied Catalysis B: Environmental, 144, 121–128.

    Article  CAS  Google Scholar 

  48. Turkdogan, F. I., & Yetilmezsoy, K. (2009). Appraisal of potential environmental risks associated with human antibiotic consumption in Turkey. Journal of Hazardous Materials, 166, 297–308.

    Article  CAS  Google Scholar 

  49. Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., & Pokomeda, K. (2014). Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresource Technology, 160, 150–160.

    Article  CAS  Google Scholar 

  50. Wu, J., Zhang, H., Oturan, N., Wang, Y., Chen, L., & Oturan, M. A. (2012). Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere, 87(6), 614–620.

    Article  CAS  Google Scholar 

  51. Yahiaoui, I., Aissani-Benissad, F., Fourcade, F., & Amrane, A. (2013). Removal of tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO2 electrode) coupled to activated sludge culture. Chemical Engineering Journal, 221, 418–425.

    Article  CAS  Google Scholar 

  52. Zhang, H., Liu, F., Wu, X., Zhang, J., & Zhang, D. (2009). Degradation of tetracycline in aqueous medium by electrochemical method. Asia-Pacific Journal of Chemical Engineering, 4(5), 568–573.

    Article  CAS  Google Scholar 

  53. Zhang, C., Jiang, Y., Li, Y., Hu, Z., Zhou, L., & Zhou, M. (2013). Three-dimensional electrochemical process for wastewater treatment: a general review. Chemical Engineering Journal, 228, 455–467.

    Article  CAS  Google Scholar 

  54. Zhang, L., Song, X., Liu, X., Yang, L., Pan, F., & Lv, J. (2011). Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chemical Engineering Journal, 178, 26–33.

    Article  CAS  Google Scholar 

  55. Zhang, L., Xu, L., He, J., & Zhang, J. (2014). Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochimica Acta, 117, 192–201.

    Article  CAS  Google Scholar 

  56. Zheng, S., Yang, F., Chen, S., Liu, L., Xiong, Q., Yu, T., Zhao, F., Schröder, U., & Hou, H. (2015). Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. Journal of Power Sources, 284, 252–257.

    Article  CAS  Google Scholar 

  57. Zhou, M., Wang, W., & Chi, M. (2009). Enhancement on the simultaneous removal of nitrate and organic pollutants from groundwater by a three-dimensional bio-electrochemical reactor. Bioresource Technology, 100(20), 4662–4668.

    Article  CAS  Google Scholar 

  58. Zhu, X., Liu, Y., Qian, F., Zhou, C., Zhang, S., & Chen, J. (2014). Preparation of magnetic porous carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Bioresource Technology, 154, 209–214.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Mohamad Hossein Ahmadi Azqhandi (Faculty of Gas and Petroleum, Yasouj University, Iran) for his valuable comments in LS-SVM analyses.

Funding

This project was financed by Hamadan University of Medical Sciences, Hamadan, Iran (Grant number 9412046696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Samarghandi.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroughi, M., Rahmani, A.R., Asgari, G. et al. Optimization and Modeling of Tetracycline Removal from Wastewater by Three-Dimensional Electrochemical System: Application of Response Surface Methodology and Least Squares Support Vector Machine. Environ Model Assess 25, 327–341 (2020). https://doi.org/10.1007/s10666-019-09675-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-019-09675-9

Keywords

Navigation