Skip to main content
Log in

A finite-difference scheme for a model of magnetization dynamics with inertial effects

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 26 March 2016

Abstract

We consider a mathematical model describing magnetization dynamics with inertial effects. The model consists of a modified form of the Landau–Lifshitz–Gilbert equation for the evolution of the magnetization vector in a rigid ferromagnet. The modification lies in the presence of an acceleration term describing inertia. A semi-implicit finite-difference scheme for the model is proposed, and a criterion of numerical stability is given. Some numerical experiments are conducted to show the performance of the scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Olive E, Lansac Y, Meyer M, Hayoun M, Wegrowe J-E (2015) Deviation from the Landau–Lifshitz–Gilbert equation in the inertial regime of the magnetization. J Appl Phys 117:213904

    Article  ADS  Google Scholar 

  2. Ciornei MC, Rubi JM, Wegrowe J-E (2011) Magnetization dynamics in the inertial regime: nutation predicted at short time scales. Phys Rev B, 83: 020410 (R) 1–4

  3. Wegrowe J-E, Ciornei MC (2012) Magnetization dynamics, gyromagnetic relation, and inertial effects. Am J Phys 80:607

    Article  ADS  Google Scholar 

  4. Cerimele MM, Pistella F, Valente V (2001) A numerical study of a nonlinear system arising in modeling of ferromagnets. In: Proceedings of the 3rd world congress of nonlinear analysts, Part 5, Catania, 2000. Nonlinear Anal 47(5):3357–3367

  5. Labbé S (2005) Fast computation for large magnetostatic systems adapted for micromagnetism. SIAM J Sci Comput 26(6):2160–2175

    Article  MathSciNet  MATH  Google Scholar 

  6. Kružík M, Prohl A (2006) Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev 48:439–483

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Pistella F, Valente V (1999) Numerical stability of a discrete model in the dynamics of ferromagnetic bodies. Numer Methods Partial Differ Equ 15(5):544–557

    Article  MathSciNet  MATH  Google Scholar 

  8. Alouges F, Jaisson P (2006) Convergence of a finite element discretization for the Landau–Lifshitz equations in micromagnetism. Math Models Methods Appl Sci 16:299–316

    Article  MathSciNet  MATH  Google Scholar 

  9. Alouges F (2008) A new finite element scheme for Landau–Lifchitz equations. Discret Contin Dyn Syst Ser S 1(2):187–196

    Article  MathSciNet  MATH  Google Scholar 

  10. Bartels S, Ko J, Prohl A (2008) Numerical approximation of an explicit approximation scheme for the Landau–Lifshitz–Gilbert equation. Math Comp 77:773–788

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bartels S, Prohl A (2006) Convergence of an implicit finite element method for the Landau–Lifshitz–Gilbert equation. SIAM J Numer Anal 44:1405–1419

    Article  MathSciNet  MATH  Google Scholar 

  12. Baňas L, Bartels S, Prohl A (2008) A convergent implicit finite element discretization of the Maxwell–Landau–Lifshitz–Gilbert equation. SIAM J Numer Anal 46(3):1399–1422

    Article  MathSciNet  MATH  Google Scholar 

  13. Baňas L, Page M, Praetorius D (2012) A convergent linear finite element scheme for the Maxwell–Landau–Lifshitz–Gilbert equations. Electron Trans Numer Anal 44(2015):250–270

  14. Cimrák I (2007) Error analysis of a numerical scheme for 3D Maxwell–Landau–Lifshitz system. Math Methods Appl Sci 30(14):1667–1683

    Article  MathSciNet  MATH  Google Scholar 

  15. Le K-N, Tran T (2013) A convergent finite element approximation for the quasi-static Maxwell–Landau–Lifshitz–Gilbert equations. Comput Math Appl 66(8):1389–1402

    Article  MathSciNet  Google Scholar 

  16. Le K-N, Tran T (2013) A finite element approximation for the quasi-static Maxwell–Landau-Lifshitz–Gilbert equations. ANZIAM J 54(CTAC2012):C681–C698

    Article  MathSciNet  Google Scholar 

  17. Cerimele MM, Pistella F, Valente V (2008) Numerical study of an evolutive model for magnetostrictive materials. Math Comput Simul 77:22–33

    Article  MathSciNet  MATH  Google Scholar 

  18. Hadda M, Tilioua M (2014) On magnetization dynamics with inertial effect. J Eng Math 88:197–206

    Article  MathSciNet  Google Scholar 

  19. Fielder J, Schrefl T (2000) Micromagnetic modelling: the current state of the art. J Phys D 33:R135

    Article  ADS  Google Scholar 

  20. Wang XP, García-Cervera CJ, Weinan E (2001) A Gauss–Seidel projection method for micromagnetics simulations. J Comp Phys 171:357–372

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Romeo A, Finocchio G, Carpentieri M, Torres L, Consolo G, Azzerboni B (2008) A numerical solution of the magnetization reversal modeling in a permalloy thin film using fifth order Runge–Kutta method with adaptive step size control. Phys B: Condens Matter 403(2):464–468

    Article  ADS  Google Scholar 

  22. Baňas L (2005) Numerical methods for the Landau-Lifshitz-Gilbert equation. In: Li L, Vulkov L, Wasniewski J (eds) Numerical analysis and its applications. Lecture Notes in Computer Science, Springer, Berlin

    Google Scholar 

  23. Monk PB, Vacus O (2001) Accurate discretization of a non-linear micromagnetic problem. Comput Methods Appl Mech Eng 190(40–41):5243–5269

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Cimrák I (2008) A survey on the numerics and computations for the Landau–Lifshitz equation of micromagnetism. Arch Comput Methods Eng 15(3):277–309

    Article  MathSciNet  MATH  Google Scholar 

  25. Podio-Guidugli P (2001) On dissipation mechanisms in micromagnetics. Eur Phys J B 19:417–424

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the editor and referees for their constructive comments and suggestions. The research was supported by the PHC Volubilis program MA/14/301 “Elaboration et analyse de modèles asymptotiques en micro-magnétisme, magnéto-élasticité et électro-élasticité” with joint financial support from the French Ministry of Foreign Affairs and the Moroccan Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tilioua.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10665-016-9857-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moumni, M., Tilioua, M. A finite-difference scheme for a model of magnetization dynamics with inertial effects. J Eng Math 100, 95–106 (2016). https://doi.org/10.1007/s10665-015-9836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-015-9836-4

Keywords

Mathematics Subject Classification

Navigation