Skip to main content
Log in

Solution of multi-component, two-phase Riemann problems with constant pressure boundaries

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Riemann problems for two associated hyperbolic systems of conservation laws are considered. The Riemann problem for constant flow velocity finds existing solutions in the literature. Here, it is proved that the associated Riemann problem with the alternative assumption of constant pressure boundaries can be calculated from the constant velocity solution. This introduces the total velocity as an unknown function of time, which is explicitly determined in an algorithmic fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Riemann B (1896) Gesammelte Werke. Dover Books, New York, p 149

    Google Scholar 

  2. Smoller J (1982) Shock waves and reaction–diffusion equations. Springer, New York

    MATH  Google Scholar 

  3. Lax PD (1957) Hyperbolic systems of conservation laws II. Commun Pure Appl Math 10:537–566

    Article  MathSciNet  MATH  Google Scholar 

  4. Rhee H-K, Aris A, Amundson NR (1970) On the theory of multicomponent chromatography. J Philos Trans R Soc Lond Ser A 267:419–455

    Article  ADS  MATH  Google Scholar 

  5. Dahl O, Johansen T, Tveito A, Winther R (1992) Multicomponent chromatography in a two phase environment. SIAM J Appl Math 52(1):65–104

    Article  MathSciNet  MATH  Google Scholar 

  6. Bratvedt F, Gimse T, Tegnander C (1996) Streamline computations for porous media flow including gravity. Trans Porous Media 22:517–533

    MATH  Google Scholar 

  7. Thiele M, Batycky RP, Fenwick DH (2010) Streamline simulation for modern reservoir engineering workflows. J Pet Technol 62:64–70

    Article  Google Scholar 

  8. Chorin AI (1976) Random choice solutions to hyperbolic systems. J Comput Phys 22:517–533

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Concus P, Proskurowski (1979) Numerical solutions of a nonlinear hyperbolic equation by the random choice method. J Comput Phys 30:153–166

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Glimm J (1965) Solutions in the large for nonlinear hyperbolic systems. Commun Pure Appl Math 18:697–715

    Article  MathSciNet  MATH  Google Scholar 

  11. Godunov SK (1959) A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Math USSR Sb 47:271–290

    MathSciNet  Google Scholar 

  12. Buckley SE, Leverett MC (1941) Mechanism of fluid displacement in sands. Pet Trans AIME 146:107

    Article  Google Scholar 

  13. Welge HG (1952) A simplified method for computing oil recovery by gas or water drive. Pet Trans AIME 195:91

    Google Scholar 

  14. Lake LW (1989) Enhanced oil recovery. Prentice-Hall, Englewood Cliffs, NJ, USA

    Google Scholar 

  15. Johansen T, Winther R (1988) The solution of the Riemann problem for a hyperbolic system of conservation laws modelling polymer flooding. SIAM J Math Anal 19(3):451–566

    Article  MathSciNet  MATH  Google Scholar 

  16. Johansen T, Winther R (1989) The Riemann problem for multicomponent polymer flooding. SIAM J Math Anal 20:909–929

    Article  MathSciNet  MATH  Google Scholar 

  17. Johansen T, Wang Y, Orr FM Jr, Dindoruk B (2005) Four-component gas/oil displacement in one dimension: part I: global triangular structure. Trans Porous Media 61:59–76

    Article  MathSciNet  Google Scholar 

  18. Wang Y, Dindoruk B, Johansen, Orr FM Jr (2005) Four-component gas/oil displacement in one dimension. Part II: Analytical; solutions for constant equilibrium ratios. Trans Porous Media 61:177–192

    Article  MathSciNet  Google Scholar 

  19. Orr FM Jr (2007) Theory of gas injection processes. Tie-Line Publication, Copenhagen

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thormod E. Johansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansen, T.E., James, L.A. Solution of multi-component, two-phase Riemann problems with constant pressure boundaries. J Eng Math 96, 23–35 (2016). https://doi.org/10.1007/s10665-014-9773-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9773-7

Keywords

Navigation