Skip to main content
Log in

Different approaches to estimating soil properties for digital soil map integrated with machine learning and remote sensing techniques in a sub-humid ecosystem

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Today, data mining has become a relevant topic in digital soil mapping. In this current study, prediction of some soil properties and their spatial distribution were examined by machine learning algorithms (Support Vector Machine, Artificial Neural Network) using reflectance values of Triplesat satellite image bands in Vezirköprü district of Samsun province. The band data obtained from different wavelengths revealed positive correlations between the electrical conductivity and calcium carbonate equivalent contents of the soils. The support vector machine algorithm was the most successful to estimate the textural fractions, organic matter, electrical conductivity, and calcium carbonate equivalent contents of the soils using the bands obtained from satellite images. The mean absolute error for estimating sand, silt, and clay contents by support vector machine was 4.05%, 3.05%, and 3.66%, respectively. Texture classes were determined with an accuracy of 82% with support vector machine and 60% with artificial neural network. In all estimations, the highest percentage of error was for calcium carbonate equivalent content with very low estimation reliability. The mean absolute percentage of error values for this property are 101.13% and 51.61% for artificial neural network and support vector machine, respectively. Also, in both algorithms, the most successfully estimated soil property was clay fraction of soils. It was also investigated the spatial distribution of actual and estimated values using various interpolation methods (Kriging, inverse distance weighting-, radial basis function). Considering the spatial distributions, it was determined that the most successful method was kriging for sand, silt, and clay contents and inverse distance weighting for electrical conductivity, calcium carbonate equivalent, and organic matter contents. According to our findings, it is concluded that successful estimations and spatial distributions can be made by the support vector machine algorithm using band data from different wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support this study will be shared upon reasonable request to the corresponding author.

References

  • Akinyemi, F. O., Pontius, R. G., Jr., & Braimoh, A. K. (2017). Land change dynamics: Insights from Intensity Analysis applied to an African emerging city. Journal of Spatial Science, 62(1), 69–83. https://doi.org/10.1080/14498596.2016.1196624

    Article  Google Scholar 

  • Aksoy, H., & Kaptan, S. (2021). Monitoring of land use/land cover changes using GIS and CA-Markov modeling techniques: A study in Northern Turkey. Environmental Monitoring and Assessment, 193(8), 507. https://doi.org/10.1007/s10661-021-09281-x

    Article  Google Scholar 

  • Alaboz, P., Başkan, O., & Dengiz, O. (2021). Computational intelligence applied to the least limiting water range to estimate soil water content using GIS and geostatistical approaches in alluvial lands. Irrigation and Drainage, 70(5), 1129–1144. https://doi.org/10.1002/ird.2628

    Article  Google Scholar 

  • Alaboz, P., & Işıldar, A. A. (2019). Evaluation of pedotransfer functions (PTFs) for some soil physical properties. Turkish Journal of Science and Engineering, 1(1), 28–34.

    Google Scholar 

  • Aydın, G., L. Atatanır, A., Yorulmaz, Y., Kurucu, H. S. Öztürk, K., Kızılkaya, K., & Kaptan, M. A. (2011). Estimation of Soil Parameters by Nirs (Near Infrared ) Spectroscopy. Soil and Water Symposium 25–27.

  • Ballabio, C. (2009). Spatial prediction of soil properties in temperate mountain regions using support vector regression. Geoderma, 151, 338–350. https://doi.org/10.1016/j.geoderma.2009.04.022

    Article  Google Scholar 

  • Bangelesa, F., Adam, E., Knight, J., Dhau, I., Ramudzuli, M., & Mokotjomela, T. M. (2020). Predicting soil organic carbon content using hyperspectral remote sensing in a degraded mountain landscape in lesotho. Applied and Environmental Soil Science, 2020, 1–11. https://doi.org/10.1155/2020/2158573

    Article  CAS  Google Scholar 

  • Baumgardner, M. F., Kristof, S., Johannsen, C. J., & Zachary, A. (1969). Effects of organic matter on the multispectral properties of soils. In Proceedings of the Indiana Academy of science (Vol. 79, pp. 413–422).

  • Bölük, E. (2016). According to Erinç Climate Classification Turkish Climate, Ministry of Forestry and Water Management General Directorate of Meteorology, Ankara.

  • Bouyoucos, G. J. (1951). A Recalibration of the Hydrometer Method for Making Mechanical Analysis of Soils. Agronomy Journal, 43(9), 434–438. Portico. https://doi.org/10.2134/agronj1951.00021962004300090005x

  • Çakır, F. S. (2019). Artificial neural networks. Nobel publications 2nd Edition. Ankara.

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.

    Article  Google Scholar 

  • de Castro Padilha, M. C., Vicente, L. E., Demattê, J. A., Loebmann, D. G. D. S. W., Vicente, A. K., Salazar, D. F., & Guimarães, C. C. B. (2020). Using Landsat and soil clay content to map soil organic carbon of oxisols and Ultisols near São Paulo, Brazil. Geoderma Regional21, e00253. https://doi.org/10.1016/j.geodrs.2020.e00253

  • Deiss, L., Margenot, A. J., Culman, S. W., & Demyan, M. S. (2020). Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma365, 114227. https://doi.org/10.1016/j.geoderma.2020.114227

  • Demattê, J. A. M., Guimarães, C. C. B., Fongaro, C. T., Vidoy, E. L. F., Sayão, V. M., Dotto, A. C., & Santos, N. V. D. (2018). Satellite Spectral Data on the Quantification of Soil Particle Size from Different Geographic Regions. Revista Brasileira de Ciência do Solo42. https://doi.org/10.1590/18069657rbcs20170392

  • Dengiz, O., Erel, A., Erkoçak, A., & Durmuş, M. (2012). Basic soil properties, classification and mapping of Kuskonagi Basin. Journal of Agriculture Faculty of Ege University, 49(1), 71–82.

    CAS  Google Scholar 

  • Dong, Z., Wang, N., Liu, J., Xie, J., & Han, J. (2021). Combination of machine learning and VIRS for predicting soil organic matter. Journal of Soils and Sediments, 21(7), 2578–2588. https://doi.org/10.1007/s11368-021-02977-0

    Article  Google Scholar 

  • Doran, J. W., & Jones, A. J. (1996). Methods for assessing soil quality, vol. 49. SSSA special publication. Madison, WI: ASA.

  • FAO. (2022). Soil Organic Carbon Mapping Cookbook. Available online: https://www.fao.org/documents/card/en/c/I8895EN/ (accessed on 7 june 2023).

  • Fathololoumi, S., Vaezi, A. R., Alavipanah, S. K., Ghorbani, A., Saurette, D., & Biswas, A. (2020). Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran. Science of the Total Environment721, 137703. https://doi.org/10.1016/j.scitotenv.2020.137703

  • Feng, Y., Lei, Z., Tong, X., Gao, C., Chen, S., Wang, J., & Wang, S. (2020). Spatially-explicit modeling and intensity analysis of China's land use change 2000–2050. Journal of Environmental Management, 263, 110407. https://doi.org/10.1016/j.jenvman.2020.110407

  • Gharbia, S. S., Alfatah, S. A., Gill, L., Johnston, P., & Pilla, F. (2016). Land use scenarios and projections simulation using an integrated GIS cellular automata algorithms. Modeling Earth Systems and Environment, 2, 1–20. https://doi.org/10.1007/s40808-016-0210-y

    Article  Google Scholar 

  • Gotway, C. A., Ferguson, R. B., Hergert, G. W., & Peterson, T. A. (1996). Comparison of kriging and inverse-distance methods for mapping soil parameters. Soil Science Society of America Journal, 60(4), 1237–1247. https://doi.org/10.2136/sssaj1996.03615995006000040040x

    Article  CAS  Google Scholar 

  • Gozdowski, D., Stępień, M., Samborski, S., Dobers, E. S., Szatyłowicz, J., & Chormański, J. (2015). Prediction accuracy of selected spatial interpolation methods for soil texture at farm field scale. Journal of Soil Science and Plant Nutrition, 15(3), 639–650. https://doi.org/10.4067/s0718-95162015005000033

    Article  Google Scholar 

  • Grunwald, S., Thompson, J. A., & Boettinger, J. L. (2011). Digital soil mapping and modeling at continental scales: Finding solutions for global issues. Soil Science Society of America Journal, 75(4), 1201–1213. https://doi.org/10.2136/sssaj2011.0025

    Article  Google Scholar 

  • Hazelton, P., & Murphy, B. (2016). Interpreting soil test results: What do all the numbers mean. CSIRO Publishing.

    Book  Google Scholar 

  • Heung, B., Ho, H. C., Zhang, J., Knudby, A., Bulmer, C. E., & Schmidt, M. G. (2016). An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma, 265, 62–77. https://doi.org/10.1016/j.geoderma.2015.11.014

    Article  Google Scholar 

  • Jackson, M. L. (1958). Soil Chemical Analysis. Prentice Hall Inc.

    Google Scholar 

  • Jiang, J., Wen, Z., Zhao, M., Bie, Y., Li, C., Tan, M., & Zhang, C. (2019). Series arc detection and complex load recognition based on principal component analysis and support vector machine. IEEE Access, 7, 47221–47229.

    Article  Google Scholar 

  • Karavanova, E.I, Shrestha, D.P., & Orlov, D.S. (2001). Application of remote sensing techniques for the study of soil salinity in semi-arid Uzbekistan. In Response to Land Degradation, Bridges EM, Hannam ID, Oldeman LR, de Vries FWTP, Scherr SJ, Sombatpanit S (eds). Oxford and IBHPublishing Co. Pvt. Ltd.: New Delhi; 261–273.

  • Kaya, F., Schillaci, C., Keshavarzi, A., & Başayiğit, L. (2022). Predictive Mapping of Electrical Conductivity and Assessment of Soil Salinity in a Western Türkiye Alluvial Plain. Land, 11(12), 2148. https://doi.org/10.3390/land11122148

    Article  Google Scholar 

  • Kesgin, B., & Nurlu, E. (2009). Land cover changes on the coastal zone of Candarli Bay, Turkey using remotely sensed data. Environmental Monitoring and Assessment, 157, 89–96. https://doi.org/10.1007/s10661-008-0517-x

    Article  Google Scholar 

  • Keshavarzi, A., del Árbol, M. Á. S., Kaya, F., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2022). Digital mapping of soil texture classes for efficient land management in the Piedmont plain of Iran. Soil Use and Management, 38(4), 1705–1735. https://doi.org/10.1111/sum.12833

    Article  Google Scholar 

  • Khalil, R. Z., W. Khalid, & M. Akram. (2016). Estimating of soil texture using landsat imagery: A case study of Thatta Tehsil, Sindh. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 3110–3113). IEEE.

  • Kuzu, B. S., & Yakut, S. G. (2020). Examination of Financial Failure Estimates According to Technological Density with the Help of Support Vector Machines. Osmaniye Korkut Ata University Journal of Economics and Administrative Sciences, 4(2), 36–54.

    Google Scholar 

  • Lamorski, K., Pachepsky, Y., Sławiński, C., & Walczak, R. T. (2008). Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Science Society of America Journal, 72(5), 1243–1247. https://doi.org/10.2136/sssaj2007.0280n

    Article  CAS  Google Scholar 

  • Lewis, C. D. (1982). Industrial and Business Forecasting Methods (p. 40). Butterworths Publishing.

    Google Scholar 

  • Lu, D., Moran, E., Hetrick, S., & Li, G. (2011). Land-Use and Land-Cover Change Detection. (2011). Advances in Environmental Remote Sensing, 273–288. https://doi.org/10.1201/b10599-18

  • Malone, B. P., McBratney, A. B., & Minasny, B. (2011). Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma, 160(3–4), 614–626. https://doi.org/10.1016/j.geoderma.2010.11.013

    Article  Google Scholar 

  • Maselli, F., Gardin, L., & Bottai, L. (2008). Automatic mapping of soil texture through the integration of ground, satellite and ancillary data. International Journal of Remote Sensing, 29(19), 5555–5569. https://doi.org/10.1080/01431160802029651

    Article  Google Scholar 

  • Miloš, B., & Bensa, A. (2017). Prediction of soil organic carbon using VIS-NIR spectroscopy: Application to Red Mediterranean soils from Croatia. Eurasian Journal of Soil Science6(4), 365–373. https://doi.org/10.18393/ejss.319208

  • Mitran, T., Solanky, V., Janakirama Suresh, G., Sujatha, G., Sreenivas, K., & Ravisankar, T. (2019). Predictive mapping of surface soil texture in a semiarid region of India through geostatistical modeling. Modeling Earth Systems and Environment, 5, 645–657. https://doi.org/10.1007/s40808-018-0556-4

    Article  Google Scholar 

  • Moradi, F., Kaboli, H. S., & Lashkarara, B. (2020). Projection of future land use/cover change in the Izeh-Pyon Plain of Iran using CA-Markov model. Arabian Journal of Geosciences, 13, 1–17. https://doi.org/10.1007/s12517-020-05984-6

    Article  Google Scholar 

  • Mousavi, S. R., Sarmadian, F., Omid, M., & Bogaert, P. (2022). Three-dimensional mapping of soil organic carbon using soil and environmental covariates in an arid and semi-arid region of Iran. Measurement201, 111706. https://doi.org/10.1016/j.measurement.2022.111706

  • Mulder, V. L., De Bruin, S., Schaepman, M. E., & Mayr, T. R. (2011). The use of remote sensing in soil and terrain mapping—A review. Geoderma, 162(1–2), 1–19. https://doi.org/10.1016/j.geoderma.2010.12.018

    Article  CAS  Google Scholar 

  • Özden, N., & Altınbaş, Ü. (2005). Research on Determining of Reflection Characters of Different Soil Taxonomic Units by Utilizing Remote Sensing Technique. Journal of Agriculture Faculty of Ege University, 42(2), 143–153.

    Google Scholar 

  • Öztemel, E. (2012). Artificial Neural Networks (3rd ed.). Papatya publishing.

    Google Scholar 

  • Panneerselvam, B., Muniraj, K., Pande, C., & Ravichandran, N. (2023). Prediction and evaluation of groundwater characteristics using the radial basic model in Semi-arid region, India. International Journal of Environmental Analytical Chemistry, 103(6), 1377–1393. https://doi.org/10.1080/03067319.2021.1873316

    Article  CAS  Google Scholar 

  • Pasolli, L., Notarnicola, C., & Bruzzone, L. (2011). Estimating soil moisture with the support vector regression technique. IEEE Geoscience and Remote Sensing Letters, 8(6), 1080–1084. https://doi.org/10.1109/LGRS.2011.2156759

    Article  Google Scholar 

  • Rezaei, M., Mousavi, S. R., Rahmani, A., Zeraatpisheh, M., Rahmati, M., Pakparvar, M., ... & Cornelis, W. (2023). Incorporating machine learning models and remote sensing to assess the spatial distribution of saturated hydraulic conductivity in a light-textured soil. Computers and Electronics in Agriculture, 209, 107821. https://doi.org/10.1016/j.compag.2023.107821

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Agriculture Handbook No, 60, 105–106.

    Google Scholar 

  • Rossel, R. V., Behrens, T., Ben-Dor, E., Brown, D. J., Demattê, J. A. M., Shepherd, K. D., ... & Ji, W. (2016). A global spectral library to characterize the world's soil. Earth-Science Reviews155, 198–230. https://doi.org/10.1016/j.earscirev.2016.01.012

  • Rossel, R. V., & Behrens, T. (2010). Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158(1–2), 46–54. https://doi.org/10.1016/j.geoderma.2009.12.025

    Article  CAS  Google Scholar 

  • Seyedmohammadi, J., Navidi, M. N., & Esmaeelnejad, L. (2019). Geospatial modeling of surface soil texture of agricultural land using fuzzy logic, geostatistics and GIS techniques. Communications in Soil Science and Plant Analysis, 50(12), 1452–1464. https://doi.org/10.1080/00103624.2019.1626870

    Article  CAS  Google Scholar 

  • Shahriari, M., Delbari, M., Afrasiab, P., & Pahlavan-Rad, M. R. (2019). Predicting regional spatial distribution of soil texture in floodplains using remote sensing data: A case of southeastern Iran. Catena, 182, 104149. https://doi.org/10.1016/j.catena.2019.104149

  • Sharififar, A. (2022). Accuracy and uncertainty of geostatistical models versus machine learning for digital mapping of soil calcium and potassium. Environmental Monitoring and Assessment, 194(10). https://doi.org/10.1007/s10661-022-10434-9

  • Shrestha, R. P. (2006). Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand. Land Degradation & Development, 17(6), 677–689. https://doi.org/10.1002/ldr.752

    Article  Google Scholar 

  • Sihag, P., Tiwari, N. K., & Ranjan, S. (2018). Support vector regression-based modeling of cumulative infiltration of sandy soil. ISH Journal of Hydraulic Engineering, 1–7. https://doi.org/10.1080/09715010.2018.1439776

  • Silva, S. H. G., Weindorf, D. C., Pinto, L. C., Faria, W. M., Acerbi Junior, F. W., Gomide, L. R., de Mello, J. M., de Pádua Junior, A. L., de Souza, I. A., Teixeira, A. F. dos S., Guilherme, L. R. G., & Curi, N. (2020). Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach. Geoderma, 362, 114136. https://doi.org/10.1016/j.geoderma.2019.114136

  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222. https://doi.org/10.1023/b:stco.0000035301.49549.88

    Article  Google Scholar 

  • Soil Survey Staff. (1993). Soil Survey Manual, USDA. Handbook No: 18 Washington D.C.

  • Sørensen, L. K., & Dalsgaard, S. (2005). Determination of Clay and Other Soil Properties by Near Infrared Spectroscopy. Soil Science Society of America Journal, 69(1), 159. https://doi.org/10.2136/sssaj2005.0159

    Article  Google Scholar 

  • Stamatiadis, S., Christofides, C., Tsadilas, C., Samaras, V., Schepers, J. S., & Francis, D. (2005). Ground-Sensor Soil Reflectance as Related to Soil Properties and Crop Response in a Cotton Field. Precision Agriculture, 6(4), 399–411. https://doi.org/10.1007/s11119-005-2326-3

    Article  Google Scholar 

  • Sünbül, V., & Tonyaloğlu, E. E. (2021). Determination of Land Use / Land Cover Change in the Case of Kaş District of Antalya. International Journal of Eastern Anatolia Science Engineering and Design, 3(2), 376–387.

    Google Scholar 

  • Taghizadeh-Mehrjardi, R., Schmidt, K., Amirian-Chakan, A., Rentschler, T., Zeraatpisheh, M., Sarmadian, F., Valavi, R., Davatgar, N., Behrens, T., & Scholten, T. (2020). Improving the Spatial Prediction of Soil Organic Carbon Content in Two Contrasting Climatic Regions by Stacking Machine Learning Models and Rescanning Covariate Space. Remote Sensing, 12(7), 1095. https://doi.org/10.3390/rs12071095

    Article  Google Scholar 

  • Turan, M., Dengiz, O., & Turan, İD. (2018). Determination of soil moisture and temperature regimes for Samsun province according to Newhall model. Turkish Journal of Agricultural Research, 5(2), 131–142.

    Google Scholar 

  • Van Wambeke, A. R. (2000). The Newhall Simulation Model for estimating soil moisture and temperature regimes. Cornell University Ithaca, NY.

    Google Scholar 

  • Wang, Z., Du, Z., Li, X., Bao, Z., Zhao, N., & Yue, T. (2021). Incorporation of high accuracy surface modeling into machine learning to improve soil organic matter mapping. Ecological Indicators, 129, 107975. https://doi.org/10.1016/j.ecolind.2021.107975

  • Were, K., Bui, D. T., Dick, Ø. B., & Singh, B. R. (2015). A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52, 394–403. https://doi.org/10.1016/j.ecolind.2014.12.028

    Article  CAS  Google Scholar 

  • Wu, W., Li, A.-D., He, X.-H., Ma, R., Liu, H.-B., & Lv, J.-K. (2018). A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China. Computers and Electronics in Agriculture, 144, 86–93. https://doi.org/10.1016/j.compag.2017.11.037

    Article  Google Scholar 

  • Xing, L., Li, L., Gong, J., Ren, C., Liu, J., & Chen, H. (2018). Daily soil temperatures predictions for various climates in United States using data-driven model. Energy, 160, 430–440. https://doi.org/10.1016/j.energy.2018.07.004

    Article  Google Scholar 

  • Yamaç, S. S., Şeker, C., & Negiş, H. (2020). Evaluation of machine learning methods to predict soil moisture constants with different combinations of soil input data for calcareous soils in a semi arid area. Agricultural Water Management, 234, 106121. https://doi.org/10.1016/j.agwat.2020.106121

  • Yin, Z., Lei, T., Yan, Q., Chen, Z., & Dong, Y. (2013). A near-infrared reflectance sensor for soil surface moisture measurement. Computers and Electronics in Agriculture, 99, 101–107. https://doi.org/10.1016/j.compag.2013.08.029

    Article  Google Scholar 

  • Yue, J., Tian, J., Tian, Q., Xu, K., & Xu, N. (2019). Development of soil moisture indices from differences in water absorption between shortwave-infrared bands. ISPRS Journal of Photogrammetry and Remote Sensing, 154, 216–230. https://doi.org/10.1016/j.isprsjprs.2019.06.012

    Article  Google Scholar 

  • Zhang, X.-Y., & SUI, Y.-Y., Zhang, X.-D., Meng, K., & Herbert, S. J. (2007). Spatial Variability of Nutrient Properties in Black Soil of Northeast China. Pedosphere, 17(1), 19–29. https://doi.org/10.1016/s1002-0160(07)60003-4

    Article  Google Scholar 

  • Zhao, Z., Chow, T. L., Rees, H. W., Yang, Q., Xing, Z., & Meng, F.-R. (2009). Predict soil texture distributions using an artificial neural network model. Computers and Electronics in Agriculture, 65(1), 36–48. https://doi.org/10.1016/j.compag.2008.07.008

    Article  Google Scholar 

Download references

Funding

No financial support was received in the conduct of this study.

Author information

Authors and Affiliations

Authors

Contributions

Fikret Saygın: data curation, investigation, formal analysis, roles/writing—original draft; Hasan Aksoy: methodology, software, validation, visualization, writing—review and editing; Pelin Alaboz: methodology, software, modelling, roles/writing—original draft Orhan Dengiz: conceptualization, visualization, roles/writing—original draft, supervision.

Corresponding author

Correspondence to Pelin Alaboz.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saygın, F., Aksoy, H., Alaboz, P. et al. Different approaches to estimating soil properties for digital soil map integrated with machine learning and remote sensing techniques in a sub-humid ecosystem. Environ Monit Assess 195, 1061 (2023). https://doi.org/10.1007/s10661-023-11681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11681-0

Keywords

Navigation