Skip to main content

Advertisement

Log in

Quantifying the landscape changes within and outside the Dachigam National Park, Kashmir Himalaya, India using observations and models

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Protected areas are the cornerstone of biodiversity and serve as a haven for biodiversity conservation. However, due to immense anthropic pressures and ongoing changes in climate, the protected reserves are under immense threat. Human interference through land system changes is a major precusor of fragmentation of landscapes resulting in the decline of Himalayan biodiversity. In this context, this research assessed land use land cover changes (LULCCs) and fragmentation within and outside the Dachigam National Park (DNP) using remote sensing data, GIS-based models and ground truth over the past 55 years (1965–2020). Landscape Fragmentation Tool (LFT) helped to compute edge effect, patchiness, perforation and core areas. The Land Change Modeller (LCM) of IDRISI TerrSet was used for simulating the future LULC for the years 2030, 2050, 2700 and 2100. The analysis of LULCCs showed that built-up and aquatic vegetation expanded by 326% and 174%, respectively in the vicinity of the DNP. The area under agriculture, scrub and pasture decreased primarily due to intensified land use activities. Within the DNP, the area under forest cover declined by 7%. A substantial decrease was observed in the core zone both within (39%) and outside (30%) the DNP indicative of fragmentation of natural habitats. LCM analysis projected 10% increase in the built-up extents besides forests, shrublands and pastures. This knowledge generated in this study shall form an important baseline for understanding and characterising the human-wildlife relationship, initiating long-term ecological research (LTER) on naturally vegetated and aquatic ecosystems (primarily Dal Lake) of the region.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated in this study are available from the corresponding author on a reasonable request.

References

  • Adhikari, S., & Southworth, J. (2012). Simulating forest cover changes of Bannerghatta National Park based on a CA-Markov model: A remote sensing approach. Remote Sensing, 4, 3215–3243.

    Google Scholar 

  • Ahmad, A., Liu, Q.-J., Nizami, S. M., Mannan, A., & Saeed, S. (2018). Carbon emission from deforestation, forest degradation and wood harvest in the temperate region of Hindukush Himalaya, Pakistan between 1994 and 2016. Land Use Policy, 78, 781–790.

    Google Scholar 

  • Ahmed, R., Ahmad, S. T., Wani, G. F., Ahmed, P., Mir, A. A., & Singh, A. (2022). Analysis of landuse and landcover changes in Kashmir valley, India—a review. GeoJournal, 87, 4391–4403.

    Google Scholar 

  • Alroy, J. (2017). Effects of habitat disturbance on tropical forest biodiversity. Proceedings of the National Academy of Sciences, 114, 6056–6061.

    CAS  Google Scholar 

  • Amin, A., Fazal, S., Mujtaba, A., & Singh, S. K. (2014). Effects of land transformation on water quality of Dal Lake, Srinagar, India. Journal of the Indian Society of Remote Sensing, 42, 119–128.

    Google Scholar 

  • Anees, S. U. M., & Bhat, M. S. (2015). Assessment of the seismic vulnerability of residential buildings of Srinagar city Jammu and Kashmir. International Journal of Advanced Research in Engineering & Technology (IJARET), 6, 20–27.

    Google Scholar 

  • Babbar, D., Areendran, G., Sahana, M., Sarma, K., Raj, K., & Sivadas, A. (2021). Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. Journal of Cleaner Production, 278, 123333.

    CAS  Google Scholar 

  • Badar, B., Romshoo, S. A., & Khan, M. A. (2013a). Modelling catchment hydrological responses in a Himalayan Lake as a function of changing land use and land cover. Journal of Earth System Science, 122, 433–449.

    Google Scholar 

  • Badar, B., Romshoo, S. A., & Khan, M. A. (2013b). Integrating biophysical and socioeconomic information for prioritizing watersheds in a Kashmir Himalayan lake: A remote sensing and GIS approach. Environmental Monitoring and Assessment, 185, 6419–6445.

    CAS  Google Scholar 

  • Balzter, H. (2000). Markov chain models for vegetation dynamics. Ecological Modelling, 126, 139–154.

    Google Scholar 

  • Barati, A. A., Zhoolideh, M., Azadi, H., Lee, J.-H., & Scheffran, J. (2023). Interactions of land-use cover and climate change at global level: How to mitigate the environmental risks and warming effects. Ecological Indicators, 146, 109829.

    Google Scholar 

  • Bashir, S. (2021). Assessing alpine ecosystem dynamics over the Great Himalayan mountain range, Kashmir: Earth observation and ecosystem modeling. Journal of the Geological Society of India, 97, 158–164.

    Google Scholar 

  • Bhat, M. Y., & Sofi, A. A. (2021). Willingness to pay for biodiversity conservation in Dachigam National Park, India. Journal for Nature Conservation, 62, 126022.

    Google Scholar 

  • Bhat, S. A., Meraj, G., Yaseen, S., Bhat, A. R., & Pandit, A. K. (2013). Assessing the impact of anthropogenic activities on spatio-temporal variation of water quality in Anchar lake, Kashmir Himalayas. International Journal of Environmental Sciences, 3, 1625–1640.

    Google Scholar 

  • Bolstad, P., & Lillesand, T. M. (1991). Rapid maximum likelihood classification. Photogrammetric Engineering and Remote Sensing, 57, 67–74.

    Google Scholar 

  • Butchart, S. H., Scharlemann, J. P., Evans, M. I., Quader, S., Arico, S., Arinaitwe, J., Balman, M., Bennun, L. A., Bertzky, B., & Besancon, C. (2012). Protecting important sites for biodiversity contributes to meeting global conservation targets. PloS One, 7, e32529.

    CAS  Google Scholar 

  • Canadell, J. G., Monteiro, P. M., Costa, M. H., Da Cunha, L. C., Cox, P. M., Alexey, V., Henson, S., Ishii, M., Jaccard, S., & Koven, C. (2021). Global carbon and other biogeochemical cycles and feedbacks.

    Google Scholar 

  • Cazzolla Gatti, R., Callaghan, T., Velichevskaya, A., Dudko, A., Fabbio, L., Battipaglia, G., & Liang, J. (2019). Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Scientific Reports, 9, 1–13.

    CAS  Google Scholar 

  • Chang, C. C., & Turner, B. L. (2019). Ecological succession in a changing world. Journal of Ecology, 107, 503–509.

    Google Scholar 

  • Chase, J. M., & Knight, T. M. (2013). Scale-dependent effect sizes of ecological drivers on biodiversity: Why standardised sampling is not enough. Ecology Letters, 16, 17–26.

    Google Scholar 

  • Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., & Fensholt, R. (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 122–129.

    Google Scholar 

  • Clark, N. E., Boakes, E. H., McGowan, P. J., Mace, G. M., & Fuller, R. A. (2013). Protected areas in South Asia have not prevented habitat loss: A study using historical models of land-use change. PloS One, 8, e65298.

    CAS  Google Scholar 

  • Clerici, N., Armenteras, D., Kareiva, P., Botero, R., Ramírez-Delgado, J. P., Forero-Medina, G., Ochoa, J., Pedraza, C., Schneider, L., & Lora, C. (2020). Deforestation in Colombian protected areas increased during post-conflict periods. Scientific Reports, 10, 1–10.

    Google Scholar 

  • Dad, J. M., Muslim, M., Rashid, I., & Reshi, Z. A. (2021). Time series analysis of climate variability and trends in Kashmir Himalaya. Ecological Indicators, 126, 107690.

    Google Scholar 

  • Dar, S. A., Bhat, S. U., & Rashid, I. (2021). Landscape transformations, morphometry, and trophic status of Anchar wetland in Kashmir Himalaya: Implications for urban wetland management. Water, Air, & Soil Pollution, 232, 1–19.

    Google Scholar 

  • Dar, S. A., Hamid, A., Rashid, I., & Bhat, S. U. (2022). Identification of anthropogenic contribution to wetland degradation: Insights from the environmetric techniques. Stochastic Environmental Research and Risk Assessment, 36, 1397–1411.

    Google Scholar 

  • Dar, S. A., Rashid, I., & Bhat, S. U. (2021). Land system transformations govern the trophic status of an urban wetland ecosystem: Perspectives from remote sensing and water quality analysis. Land Degradation & Development, 32, 4087–4104.

    Google Scholar 

  • Dar, S. A., Bhat, S. U., Rashid, I., & Dar, S. A. (2020). Current status of wetlands in Srinagar city: Threats, management strategies, and future perspectives. Frontiers in Environmental Science, 7, 199.

    Google Scholar 

  • Dean, A. M., & Smith, G. M. (2003). An evaluation of per-parcel land cover mapping using maximum likelihood class probabilities. International Journal of Remote Sensing, 24, 2905–2920.

    Google Scholar 

  • Di Vittorio, A. V., Chini, L. P., Bond-Lamberty, B., Mao, J., Shi, X., Truesdale, J., Craig, A., Calvin, K., Jones, A., & Collins, W. D. (2014). From land use to land cover: Restoring the afforestation signal in a coupled integrated assessment–earth system model and the implications for CMIP5 RCP simulations. Biogeosciences, 11, 6435–6450.

    Google Scholar 

  • Dong, N., Liu, Z., Luo, M., Fang, C. Y., & Lin, H. (2019). The effects of anthropogenic land-use changes on climate in China driven by global socioeconomic and emission scenarios. Earth’s Future, 7, 784–804.

    Google Scholar 

  • Eastman, J. R. (2016). TerrSet geospatial monitoring and modeling system (pp. 345–389). Clark University.

    Google Scholar 

  • Ganaie, T. A., Sahana, M., & Hashia, H. (2018). Assessing and monitoring the human influence on water quality in response to land transformation within Wular environs of Kashmir Valley. GeoJournal, 83, 1091–1113.

    Google Scholar 

  • Geldmann, J., Manica, A., Burgess, N. D., Coad, L., & Balmford, A. (2019). A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proceedings of the National Academy of Sciences, 116, 23209–23215.

    CAS  Google Scholar 

  • Gu, C., Zhao, P., Chen, Q., Li, S., Li, L., Liu, L., & Zhang, Y. (2020). Forest cover change and the effectiveness of protected areas in the Himalaya since 1998. Sustainability, 12, 6123.

    Google Scholar 

  • Guan, D., Gao, W., Watari, K., & Fukahori, H. (2008). Land use change of Kitakyushu based on landscape ecology and Markov model. Journal of Geographical Sciences, 18, 455–468.

    Google Scholar 

  • Guo, Z., Ferrer, J. V., Hürlimann, M., Medina, V., Puig-Polo, C., Yin, K., & Huang, D. (2023). Shallow landslide susceptibility assessment under future climate and land cover changes: A case study from southwest China. Geoscience Frontiers, 14, 101542.

  • Habib, A. (2016). Human-wildlife conflict-causes, consequences and mitigation measures with special reference to Kashmir. Journal of Zoology Studies, 2, 26–30.

    Google Scholar 

  • Huang, B., Hu, X., Fuglstad, G.-A., Zhou, X., Zhao, W., & Cherubini, F. (2020). Predominant regional biophysical cooling from recent land cover changes in Europe. Nature Communications, 11, 1066.

    CAS  Google Scholar 

  • ISRO, 2005. NNRMS standards: A national standard for EO images, thematic and cartographic maps, GIS Databases and Spatial Outputs. ISRO NNRMS Tech Rep No 112, 235pp.

  • Jorgenson, M. T., Douglas, T. A., Liljedahl, A. K., Roth, J. E., Cater, T. C., Davis, W. A., Frost, G. V., Miller, P. F., & Racine, C. H. (2020). The roles of climate extremes, ecological succession, and hydrology in repeated permafrost aggradation and degradation in fens on the Tanana Flats, Alaska. Journal of Geophysical Research: Biogeosciences, 125, e2020JG005824.

    Google Scholar 

  • Kerns, B. K., Powell, D. C., Mellmann-Brown, S., Carnwath, G., & Kim, J. B. (2018). Effects of projected climate change on vegetation in the Blue Mountains ecoregion, USA. Climate Services, 10, 33–43.

    Google Scholar 

  • Keshtkar, H., & Voigt, W. (2016). A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Modeling Earth Systems and Environment, 2, 1–13.

    Google Scholar 

  • Khorchani, M., Nadal-Romero, E., Lasanta, T., & Tague, C. (2021). Effects of vegetation succession and shrub clearing after land abandonment on the hydrological dynamics in the Central Spanish Pyrenees. Catena, 204, 105374.

    Google Scholar 

  • Ku, C.-A. (2016). Incorporating spatial regression model into cellular automata for simulating land use change. Applied Geography, 69, 1–9.

    Google Scholar 

  • Kumar, S., Radhakrishnan, N., & Mathew, S. (2014). Land use change modelling using a Markov model and remote sensing. Geomatics, Natural Hazards and Risk, 5, 145–156.

    Google Scholar 

  • Liang, X., Liu, X., Li, D., Zhao, H., & Chen, G. (2018). Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. International Journal of Geographical Information Science, 32, 2294–2316.

    Google Scholar 

  • Liping, C., Yujun, S., & Saeed, S. (2018). Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—a case study of a hilly area, Jiangle, China. PloS one, 13, e0200493.

    Google Scholar 

  • Malek, Ž., & Verburg, P. H. (2020). Mapping global patterns of land use decision-making. Global Environmental Change, 65, 102170.

    Google Scholar 

  • Malik, A. H., Rashid, I., Ganie, A. H., Khuroo, A. A., & Dar, G. H. (2015). Benefitting from geoinformatics: Estimating floristic diversity of Warwan valley in Northwestern Himalaya, India. Journal of Mountain Science, 12, 854–863.

    Google Scholar 

  • Maqsood, S. T., & Schwarz, J. (2010). Comparison of seismic vulnerability of buildings before and after 2005 Kashmir earthquake. Seismological Research Letters, 81, 85–98.

    Google Scholar 

  • Mas, J.-F., Pérez-Vega, A., & Clarke, K. C. (2012). Assessing simulated land use/cover maps using similarity and fragmentation indices. Ecological Complexity, 11, 38–45.

    Google Scholar 

  • Mir, Z. R., Noor, A., Habib, B., & Veeraswami, G. G. (2015). Attitudes of local people toward wildlife conservation: A case study from the Kashmir Valley. Mountain Research and Development, 35, 392–400.

    Google Scholar 

  • Moten, T. L., Bhat, T. A., Gulzar, A., Mir, A., & Mir, F. (2017). Casualties of human wildlife conflict in Kashmir valley, India; a neglected form of trauma: Our 10 year study. International Journal of Research in Medical Sciences, 5, 1898–1902.

    Google Scholar 

  • Mukherjee, T., Sharma, V., Sharma, L. K., Thakur, M., Joshi, B. D., Sharief, A., Thapa, A., Dutta, R., Dolker, S., & Tripathy, B. (2021). Landscape-level habitat management plan through geometric reserve design for critically endangered Hangul (Cervus hanglu hanglu). Science of The Total Environment, 777, 146031.

    CAS  Google Scholar 

  • Murphy, G. E., & Romanuk, T. N. (2014). A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution, 4, 91–103.

    Google Scholar 

  • Nayak, S., & Mandal, M. (2019). Impact of land use and land cover changes on temperature trends over India. Land Use Policy, 89, 104238.

    Google Scholar 

  • Newbold, T., Hudson, L. N., Contu, S., Hill, S. L., Beck, J., Liu, Y., Meyer, C., Phillips, H. R., Scharlemann, J. P., & Purvis, A. (2018). Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLoS Biology, 16, e2006841.

    Google Scholar 

  • Olmedo, M. T. C., Pontius, R. G., Jr., Paegelow, M., & Mas, J.-F. (2015). Comparison of simulation models in terms of quantity and allocation of land change. Environmental Modelling & Software, 69, 214–221.

    Google Scholar 

  • Padalia, H., & Bahuguna, U. (2017). Spatial modelling of congruence of native biodiversity and potential hotspots of forest invasive species (FIS) in central Indian landscape. Journal for Nature Conservation, 36, 29–37.

    Google Scholar 

  • Pandit, M. K., & Kumar, V. (2013). Land-use change and conservation challenges in the Indian Himalaya: Past, present, and future (pp. 121–133). Conservation biology: Voices from the tropics.

    Google Scholar 

  • Pandit, M. K., Sodhi, N. S., Koh, L. P., Bhaskar, A., & Brook, B. W. (2007). Unreported yet massive deforestation driving loss of endemic biodiversity in Indian Himalaya. Biodiversity and Conservation, 16, 153–163.

    Google Scholar 

  • Paola, J. D., & Schowengerdt, R. A. (1995). A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing, 33, 981–996.

    Google Scholar 

  • Parray, S. Y., Koul, B., & Shah, M. P. (2021). Comparative assessment of dominant macrophytes and limnological parameters of Dal Lake and Chatlam wetlands in the Union territory of Jammu & Kashmir, India. Environmental Technology & Innovation, 24, 101978.

    CAS  Google Scholar 

  • Peringer, A., Frank, V., & Snell, R. S. (2022). Climate change simulations in Alpine summer pastures suggest a disruption of current vegetation zonation. Global Ecology and Conservation, 37, e02140.

    Google Scholar 

  • Peters, M. K., Hemp, A., Appelhans, T., Becker, J. N., Behler, C., Classen, A., Detsch, F., Ensslin, A., Ferger, S. W., & Frederiksen, S. B. (2019). Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature, 568, 88–92.

    CAS  Google Scholar 

  • Rashid, I., & Aneaus, S. (2019). High-resolution earth observation data for assessing the impact of land system changes on wetland health in Kashmir Himalaya, India. Arabian Journal of Geosciences, 12, 1–13.

    Google Scholar 

  • Rashid, I., & Aneaus, S. (2020). Landscape transformation of an urban wetland in Kashmir Himalaya, India using high-resolution remote sensing data, geospatial modeling, and ground observations over the last 5 decades (1965–2018). Environmental Monitoring and Assessment, 192, 1–14.

    Google Scholar 

  • Rashid, I., Bhat, M. A., & Romshoo, S. A. (2017). Assessing changes in the above ground biomass and carbon stocks of Lidder valley, Kashmir Himalaya, India. Geocarto International, 32, 717–734.

    Google Scholar 

  • Rashid, I., Dar, S. A., & Bhat, S. U. (2022). Modelling the hydrological response to urban land-use changes in three wetland catchments of the Western Himalayan region. Wetlands, 42, 1–17.

    Google Scholar 

  • Rashid, I., Farooq, M., Muslim, M., & Romshoo, S. A. (2013). Assessing the impact of anthropogenic activities on Manasbal Lake in Kashmir Himalayas. International Journal of Environmental Sciences, 3, 2036–2047.

    Google Scholar 

  • Rashid, I., & Majeed, U. (2020). Retreat and geodetic mass changes of Zemu Glacier, Sikkim Himalaya, India, between 1931 and 2018. Regional Environmental Change, 20, 1–13.

    Google Scholar 

  • Rashid, I., Majeed, U., Aneaus, S., Cánovas, J. A. B., Stoffel, M., Najar, N. A., Bhat, I. A., & Lotus, S. (2020). Impacts of erratic snowfall on apple orchards in Kashmir Valley, India. Sustainability, 12, 9206.

    Google Scholar 

  • Rashid, I., Majeed, U., Aneaus, S., & Pelto, M. (2020). Linking the recent glacier retreat and depleting streamflow patterns with land system changes in Kashmir Himalaya, India. Water, 12, 1168.

    Google Scholar 

  • Rashid, I., Rather, M. I., & Khanday, S. A. (2021). Investigating the 2017 erratic fishkill episode in the Jhelum River, Kashmir Himalaya. Pollutants, 1, 87–94.

    Google Scholar 

  • Rashid, I., Romshoo, S. A., Amin, M., Khanday, S. A., & Chauhan, P. (2017). Linking human-biophysical interactions with the trophic status of Dal Lake, Kashmir Himalaya, India. Limnologica, 62, 84–96.

    CAS  Google Scholar 

  • Rashid, I., Romshoo, S. A., Chaturvedi, R. K., Ravindranath, N. H., Sukumar, R., Jayaraman, M., Lakshmi, T. V., & Sharma, J. (2015). Projected climate change impacts on vegetation distribution over Kashmir Himalayas. Climatic Change, 132, 601–613.

    Google Scholar 

  • Rather, I. A., & Dar, A. Q. (2020). Assessing the impact of land use and land cover dynamics on water quality of Dal Lake, NW Himalaya, India. Applied Water Science, 10, 1–18.

    Google Scholar 

  • Rather, M. I., Rashid, I., Shahi, N., Murtaza, K. O., Hassan, K., Yousuf, A. R., Romshoo, S. A., & Shah, I. Y. (2016). Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya. Environmental Monitoring and Assessment, 188, 1–20.

    CAS  Google Scholar 

  • Reddy, C. S., Saranya, K. R. L., Pasha, S. V., Satish, K. V., Jha, C. S., Diwakar, P. G., Dadhwal, V. K., Rao, P. V. N., & Murthy, Y. K. (2018). Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s. Global and Planetary Change, 161, 132–148.

    Google Scholar 

  • Reddy, C. S., Sreelekshmi, S., Jha, C. S., & Dadhwal, V. K. (2013). National assessment of forest fragmentation in India: Landscape indices as measures of the effects of fragmentation and forest cover change. Ecological Engineering, 60, 453–464.

    Google Scholar 

  • Romshoo, S. A., Altaf, S., Rashid, I., & Dar, R. A. (2018). Climatic, geomorphic and anthropogenic drivers of the 2014 extreme flooding in the Jhelum basin of Kashmir, India. Geomatics, Natural Hazards and Risk, 9, 224–248.

    Google Scholar 

  • Romshoo, S. A., Fayaz, M., Meraj, G., & Bahuguna, I. M. (2020). Satellite-observed glacier recession in the Kashmir Himalaya, India, from 1980 to 2018. Environmental Monitoring and Assessment, 192, 1–17.

    Google Scholar 

  • Sinha, R. K., Eldho, T. I., & Subimal, G. (2023). Assessing the impacts of land use/land cover and climate change on surface runoff of a humid tropical river basin in Western Ghats, India. International Journal of River Basin Management, 21, 141–152.

    Google Scholar 

  • Sobhani, P., Esmaeilzadeh, H., Barghjelveh, S., Sadeghi, S. M. M., & Marcu, M. V. (2021). Habitat integrity in protected areas threatened by LULC changes and fragmentation: A case study in Tehran Province, Iran. Land, 11, 6.

    Google Scholar 

  • Song, X.-P., Hansen, M. C., Stehman, S. V., Potapov, P. V., Tyukavina, A., Vermote, E. F., & Townshend, J. R. (2018). Global land change from 1982 to 2016. Nature, 560, 639–643.

    CAS  Google Scholar 

  • Stehfest, E., van Zeist, W.-J., Valin, H., Havlik, P., Popp, A., Kyle, P., Tabeau, A., Mason-D’Croz, D., Hasegawa, T., & Bodirsky, B. L. (2019). Key determinants of global land-use projections. Nature Communications, 10, 2166.

    Google Scholar 

  • Sulzberger, B., Austin, A. T., Cory, R. M., Zepp, R. G., & Paul, N. D. (2019). Solar UV radiation in a changing world: Roles of cryosphere–land–water–atmosphere interfaces in global biogeochemical cycles. Photochemical & Photobiological Sciences, 18, 747–774.

    CAS  Google Scholar 

  • Tali, B. A., Ganie, A. H., Nawchoo, I. A., Wani, A. A., & Reshi, Z. A. (2015). Assessment of threat status of selected endemic medicinal plants using IUCN regional guidelines: A case study from Kashmir Himalaya. Journal for Nature Conservation, 23, 80–89.

    Google Scholar 

  • Tarawally, M., Wenbo, X., Weiming, H., Mushore, T. D., & Kursah, M. B. (2019). Land use/land cover change evaluation using land change modeller: A comparative analysis between two main cities in Sierra Leone. Remote Sensing Applications: Society and Environment, 16, 100262.

    Google Scholar 

  • Tariq, B., Ahmad, K., Tanveer, S., & Bhat, A. H. (2022). Analysis of wildlife attacks on humans and economic losses in and around Hirpora Wildlife Sanctuary along Pir Panjal moutain Range, Western Himalayas. Journal of Wildlife and Biodiversity, 6, 119–136.

    Google Scholar 

  • Uddin, K., Chaudhary, S., Chettri, N., Kotru, R., Murthy, M., Chaudhary, R. P., Ning, W., Shrestha, S. M., & Gautam, S. K. (2015). The changing land cover and fragmenting forest on the Roof of the World: A case study in Nepal’s Kailash Sacred Landscape. Landscape and Urban Planning, 141, 1–10.

    Google Scholar 

  • Vogt, P., Riitters, K. H., Estreguil, C., Kozak, J., Wade, T. G., & Wickham, J. D. (2007). Mapping spatial patterns with morphological image processing. Landscape Ecology, 22, 171–177.

    Google Scholar 

  • Wang, S., & Zheng, X. (2023). Dominant transition probability: Combining CA-Markov model to simulate land use change. Environment, Development and Sustainability, 25(7), 6829–6847.

    Google Scholar 

  • Wani, A. A., Amin, Y., Gatoo, A. A., Islam, M. A., Murtaza, S., Farooq, A., Masoodi, T. H., Ahmad, S., Bhat, J. A., & Bhat, S. S. (2020). Assessing drivers of deforestation and forest degradation in Pir Panjal Region of Kashmir Himalayas using geospatial approach. Indian Forester, 146, 1104–1114.

    Google Scholar 

  • Wani, A. A., Joshi, P. K., Singh, O., & Shafi, S. (2016). Multi-temporal forest cover dynamics in Kashmir Himalayan region for assessing deforestation and forest degradation in the context of REDD+ policy. Journal of Mountain Science, 13, 1431–1441.

    Google Scholar 

  • Wilson, C. O., & Weng, Q. (2011). Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan statistical area, Illinois. Science of the Total Environment, 409, 4387–4405.

    CAS  Google Scholar 

  • Winkler, K., Fuchs, R., Rounsevell, M., & Herold, M. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12, 1–10.

    Google Scholar 

  • Zabel, F., Delzeit, R., Schneider, J. M., Seppelt, R., Mauser, W., & Václavík, T. (2019). Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nature Communications, 10, 1–10.

    CAS  Google Scholar 

  • Zaz, S. N., & Romshoo, S. A. (2012). Assessing the geoindicators of land degradation in the Kashmir Himalayan region, India. Natural Hazards, 64, 1219–1245.

    Google Scholar 

  • Zaz, S. N., Romshoo, S. A., Krishnamoorthy, R. T., & Viswanadhapalli, Y. (2019). Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: Implications for remote influence and extreme events. Atmospheric Chemistry and Physics, 19, 15–37.

    CAS  Google Scholar 

  • Zehnder, T., Lüscher, A., Ritzmann, C., Pauler, C. M., Berard, J., Kreuzer, M., & Schneider, M. K. (2020). Dominant shrub species are a strong predictor of plant species diversity along subalpine pasture-shrub transects. Alpine Botany, 130, 141–156.

    Google Scholar 

  • Zheng, L., Xu, J., Li, D., Xia, Z., Chen, Y., Xu, G., & Lu, D. (2021). Increasing control of climate warming on the greening of alpine pastures in Central Asia. International Journal of Applied Earth Observation and Geoinformation, 105, 102606.

    Google Scholar 

Download references

Acknowledgements

The authors are gratfeful to USGS for hosting the earth observation data used in this research.

Funding

The authors express their gratitude for the financial assistance received from the Ministry of Environment, Forests and Climate Change (MOEF&CC), Government of India under its National Mission for Himalayan Studies sponsored research project on Hyperspectral Imaging for sharper definitions of Himalayan Ecosystems and its high value plant species under climate uncertainties [Grant no. GBPNI/NMHS-2017-18/MG-18/554/466/126/309/354]. Sheikh Aneaus expresses her gratitude for the financial assistance received from the Department of Science and Technology, Government of India under the WISE KIRAN fellowship scheme [Grant no: DST/WOS-A/EA-10/2021 (C)] for pursuing Ph.D.

Author information

Authors and Affiliations

Authors

Contributions

Sheikh Aneaus performed formal analysis, curated data and maps in consultation with Irfan Rashid. Irfan Rashid conceptualized and supervised the research work. Sheikh Aneaus and Irfan Rashid wrote the first draft of the manuscript. Prashant K. Srivastava and Samina Charoo edited the first draft of the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Irfan Rashid.

Ethics declarations

Ethical approval

The manuscript complies with all the ethical requirements.

Consent for publication

The authors confirm that the work described has not been published before, and it is not under consideration for publication elsewhere.

Conflict of interest

The authors declare no competing interests.

Additional information

The paper has not been published in any other journal.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

•LULCCs over six decades linked with fragmentation in the western Himalaya.

•Aquatic vegetation, built-up, forest and shrubland are projected to decrease in the vicinity of conservation reserve.

•Alpine pasture and exposed rock are projected to decrease within the conservation reserve.

•Fragmentation has implications on biodiversity richness, human-wildlife conflicts and earth surface processes.

•This baseline knowledge is useful for habitat modelling, human-wildlife relationships and climate impact studies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aneaus, S., Rashid, I., Srivastava, P.K. et al. Quantifying the landscape changes within and outside the Dachigam National Park, Kashmir Himalaya, India using observations and models. Environ Monit Assess 195, 1139 (2023). https://doi.org/10.1007/s10661-023-11676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11676-x

Keywords

Navigation