Skip to main content

Advertisement

Log in

The relationship between PM10 and meteorological variables in the mega city Istanbul

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

PM10, one of the air pollutants, occurs regularly in İstanbul during the winter months, namely in December, January, and February. PM10 pollutant is affected by numerous factors. Among these factors are various meteorological variables and climatological factors. This article aims to determine the relationship between PM10 and meteorological variables (wind speed, wind direction, temperature, and relative humidity) and to interpret these results. PM10 and meteorological data were examined between 2011 and 2018. To determine the relationship, multiple linear regression, Pearson’s correlation coefficient (PCC), Spearman’s rank correlation, Kendall Tau correlation, autocorrelation function (ACF), cross-correlation function (CCF), and visuals were determined using the R program (open-air) packages. In the study, the relationship between wind, temperature, and relative humidity with PM10 was determined, and it was observed that the PM10 concentration was maximum between January and February. PM10 concentrations have a positive relationship with relative humidity and wind direction, while a negative relationship with wind speed and temperature was observed. The correlation values for relative humidity and temperature were found to be 0.01 and − 0.15, respectively. Furthermore, the relationship between wind speed and PM10 was calculated from multiple linear regression model, and the estimated value was − 0.12 while looking at the wind direction value, it was approximately 0.03.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional files. Also, all data publicly available online at http://sim.csb.gov.tr/SERVICES/airquality and https://mesonet.agron.iastate.edu/request/download.phtml.

References

  • Abdullah, S., Ismail, M., & Fong, S. Y. (2017). Multiple linear regression (MLR) models for long term PM10 concentration forecasting during different monsoon seasons. Journal of Sustainability Science and Management, 12(1), 60–69.

    Google Scholar 

  • Alemdar, K. D., Kaya, Ö., Canale, A., Çodur, M. Y., & Campisi, T. (2021). Evaluation of air quality index by spatial analysis depending on vehicle traffic during the COVID-19 outbreak in Turkey. Energies, 14(18), 5729.

    Article  CAS  Google Scholar 

  • Ashoor, A. S., & Naji, A. A. K. K. (2021). Integrated network of pearson correlation coefficients, Kendall Tau, Spearman Rho and its impact on disease, health indicators and mortality ratings in Babil Province. In Proceedings of First International Conference on Mathematical Modeling and Computational Science (pp. 83-96). Springer, Singapore.

  • Astrauskaitė, I., & Paškevičius, A. (2018). An analysis of crowdfunded projects: KPI’s to success. Entrepreneurship and Sustainability Issues, 6(1), 23–24. https://doi.org/10.9770/jesi.2018.6.1(2)

    Article  Google Scholar 

  • Baltaci, H., Akkoyunlu, B. O., Arslan, H., Yetemen, O., & Ozdemir, E. T. (2019). The influence of meteorological conditions and atmospheric circulation types on PM10 levels in western Turkey. Environmental Monitoring and Assessment, 191(7), 466. https://doi.org/10.1007/s10661-019-7609-7

    Article  CAS  Google Scholar 

  • Barlik, N. (2021). Effect of meteorological parameters on PM10 concentrations in Ardahan by wavelet coherence analysis. Celal Bayar University Journal of Science, 17(1), 43–49.

    Google Scholar 

  • Bodor, Z., Bodor, K., Keresztesi, Á., & Szép, R. (2020). Major air pollutants seasonal variation analysis and long-range transport of PM10 in an urban environment with specific climate condition in Transylvania (Romania). Environmental Science and Pollution Research, 27(30), 38181–38199.

    Article  CAS  Google Scholar 

  • Calderón-Ezquerro, M. C., Serrano-Silva, N., & Brunner-Mendoza, C. (2020). Metagenomic characterisation of bioaerosols during the dry season in Mexico City. Aerobiologia, 36(3), 493–505. https://doi.org/10.1007/s10453-020-09649-5

    Article  Google Scholar 

  • Çapraz, Ö., & Deniz, A. (2021). Particulate matter (PM10 and PM2.5) concentrations during a Saharan dust episode in Istanbul. Air Quality, Atmosphere & Health, 14(1), 109–116. https://doi.org/10.1007/s11869-020-00917-4

    Article  CAS  Google Scholar 

  • Çapraz, Ö., Efe, B., & Deniz, A. (2016). Study on the association between air pollution and mortality in İstanbul, 2007–2012. Atmospheric Pollution Research, 7(1), 147–154. https://doi.org/10.1016/j.apr.2015.08.006

    Article  Google Scholar 

  • Carslaw, D. C., & Ropkins, K. (2012). Openair—an R package for air quality data analysis. Environmental Modelling & Software, 27, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008

    Article  Google Scholar 

  • Chaloulakou, A., Kassomenos, P., Spyrellis, N., Demokritou, P., & Koutrakis, P. (2003). Measurements of PM and PM particle concentrations in Athens, 10 2.5 Greece. Atmospheric Environment, 37(5), 649–660.

    Article  CAS  Google Scholar 

  • Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L. E., Leni, Z., Vlachou, A., ... & Prévôt, A. S. (2020). Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature, 587(7834), 414–419.

  • Deng, J., Deng, Y., & Cheong, K. H. (2021). Combining conflicting evidence based on Pearson correlation coefficient and weighted graph. International Journal of Intelligent Systems, 36(12), 7443–7460. https://doi.org/10.1002/int.22593

    Article  Google Scholar 

  • Effatpanah, M., Effatpanah, H., Jalali, S., Parseh, I., Goudarzi, G., Barzegar, G., ... & Mohammadi, M. J. (2020). Hospital admission of exposure to air pollution in Ahvaz megacity during 2010–2013. Clinical Epidemiology and Global Health, 8(2), 550–556. https://doi.org/10.1016/j.cegh.2019.12.001

  • Encalada-Malca, A. A., Cochachi-Bustamante, J. D., Rodrigues, P. C., Salas, R., & López-Gonzales, J. L. (2021). A spatio-temporal visualization approach of pm10 concentration data in metropolitan lima. Atmosphere, 12(5), 609. https://doi.org/10.3390/atmos12050609

    Article  Google Scholar 

  • Etaga Harrison, O., & Ifeanyichukwu, O. (2021). Methods of estimating correlation coefficients in the presence of influential outlier (S). Methods, 4(3), 157–185. https://doi.org/10.52589/AJMSS-LLNZXUOZ

    Article  Google Scholar 

  • European Air Quality Index. EAQI. (2022). https://airindex.eea.europa.eu/Map/AQI/Viewer/. Accessed on 15.04.2022.

  • Fadi, A. J., Entisar, A. K., & Muthabba, A. O. (2013). Concentrations of particulate matter and their relationships with meteorological variables. Sustainable Environment Research, 23(3), 191–198.

  • Fallahizadeh, S., Kermani, M., Esrafili, A., Asadgol, Z., & Gholami, M. (2021). The effects of meteorological parameters on PM10: Health impacts assessment using AirQ+ model and prediction by an artificial neural network (ANN). Urban Climate, 38, 100905. https://doi.org/10.1016/j.uclim.2021.100905

    Article  Google Scholar 

  • Haddad, K., & Vizakos, N. (2021). Air quality pollutants and their relationship with meteorological variables in four suburbs of Greater Sydney, Australia. Air Quality, Atmosphere & Health, 14(1), 55–67. https://doi.org/10.1007/s11869-020-00913-8

    Article  CAS  Google Scholar 

  • Harker, B. M., Gee, K. L., Neilsen, T. B., Wall, A. T., McInerny, S. A., & James, M. M. (2013). On autocorrelation analysis of jet noise. The Journal of the Acoustical Society of America, 133(6), EL458–EL464. https://doi.org/10.1121/1.4802913

    Article  Google Scholar 

  • Hauke, J., & Kossowski, T. (2011). Comparison of values of Pearson’s and Spearman’s correlation coefficients on the same sets of data. Quaestiones Geographicae, 30(2), 87. https://doi.org/10.2478/v10117-011-0021-1

    Article  Google Scholar 

  • Havakalitesi. (2022). https://havakalitesi.ibb.gov.tr/Icerik/istanbul-hava-kalitesi/guncel-durum. Accessed on 10.12.2022.

  • Incecik, S. (1996). Investigation of atmospheric conditions in Istanbul leading to air pollution episodes. Atmospheric Environment, 30(15), 2739–2749.

    Article  CAS  Google Scholar 

  • Istanbul Metropolitan Multiplicity. (2022). https://havakalitesi.ibb.gov.tr/. Accessed on 15.12.2022.

  • Jeong, H., Park, M., Hwang, W., Kim, E., & Han, M. (2013). The effect of calm conditions and wind intervals in low wind speed on atmospheric dispersion factors. Annals of Nuclear Energy, 55, 230–237. https://doi.org/10.1016/j.anucene.2012.12.018

    Article  CAS  Google Scholar 

  • Kanakidou, M., Mihalopoulos, N., Kindap, T., Im, U., Vrekoussis, M., Gerasopoulos, E., & Moubasher, H. (2011). Megacities as hot spots of air pollution in the East Mediterranean. Atmospheric Environment, 45(6), 1223–1235. https://doi.org/10.1016/j.atmosenv.2010.11.048

    Article  CAS  Google Scholar 

  • Khobragade, P. P., & Ahirwar, A. V. (2022). Exploring temporal variation of PM2.5 and PM10 and their association with meteorological data in Raipur, Chhattisgarh. In IOP Conference Series: Earth and Environmental Science (Vol. 1032, No. 1, p. 012035). IOP Publishing.

  • Kim, M. J. (2019). Changes in the relationship between particulate matter and surface temperature in Seoul from 2002–2017. Atmosphere, 10(5), 238.

    Article  Google Scholar 

  • Kliengchuay, W., Worakhunpiset, S., Limpanont, Y., Meeyai, A. C., & Tantrakarnapa, K. (2021). Influence of the meteorological conditions and some pollutants on PM10 concentrations in Lamphun, Thailand. Journal of Environmental Health Science and Engineering, 19(1), 237–249.

    Article  CAS  Google Scholar 

  • Korkmaz, M. (2021). A study over the general formula of regression sum of squares in multiple linear regression. Numerical Methods for Partial Differential Equations, 37(1), 406–421. https://doi.org/10.1002/num.22533

    Article  Google Scholar 

  • Lee, B. J., Kim, B., & Lee, K. (2014). Air pollution exposure and cardiovascular disease. Toxicological Research, 30(2), 71–75. https://doi.org/10.5487/TR.2014.30.2.071

    Article  CAS  Google Scholar 

  • Li, Y., Chen, Q., Zhao, H., Wang, L., & Tao, R. (2015). Variations in PM10, PM2.5 and PM1. 0 in an urban area of the Sichuan Basin and their relation to meteorological factors. Atmosphere, 6(1), 150–163. https://doi.org/10.3390/atmos6010150

    Article  Google Scholar 

  • Li, Z., Gao, X., & Lu, D. (2021). Correlation analysis and statistical assessment of early hydration characteristics and compressive strength for multi-composite cement paste. Construction and Building Materials, 310, 125260. https://doi.org/10.1016/j.conbuildmat.2021.125260

    Article  Google Scholar 

  • Mahanta, S. K., Panda, B. S., Pati, S. S., Mallik, M. R., Mahanta, B., Biswas, K., & Sahu, R. (2021). Influence of meteorological variables on ambient air pollutants of a Coastal District in Eastern India. Oriental Journal of Chemistry, 37(1), 194–203.

    Article  CAS  Google Scholar 

  • Markozannes, G., Pantavou, K., Rizos, E. C., Sindosi, O. Α., Tagkas, C., Seyfried, M., ... & Ntzani, E. (2022). Outdoor air quality and human health: An overview of reviews of observational studies. Environmental Pollution, 119309. https://doi.org/10.1016/j.envpol.2022.119309

  • Mesonet. (2022). https://mesonet.agron.iastate.edu/request/download.phtml. Accessed on 10.02.2022.

  • Mueller, W., Vardoulakis, S., Steinle, S., Loh, M., Johnston, H. J., Precha, N., & Cherrie, J. W. (2021). A health impact assessment of long-term exposure to particulate air pollution in Thailand. Environmental Research Letters, 16(5), 055018. https://doi.org/10.1088/1748-9326/abe3ba

    Article  CAS  Google Scholar 

  • NOAA. (2022). https://forecast.weather.gov/glossary.php?word=kt#:~:text=KT,or%200.5%20meters%2Fsec. Accessed on 10.12.2022.

  • Novotny, J., Dejmal, K., Repal, V., Gera, M., & Sladek, D. (2021). Assessment of TAF, METAR, and SPECI reports based on ICAO ANNEX 3 Regulation. Atmosphere, 12(2), 138. https://doi.org/10.3390/atmos12020138

    Article  Google Scholar 

  • Özdemir, E. T. (2019). Investigations of a southerly non-convective high wind event in Turkey and effects on PM10 values: A case study on April 18, 2012. Pure and Applied Geophysics, 176(10), 4599–4622. https://doi.org/10.1007/s00024-019-02240-1

    Article  Google Scholar 

  • Özdemir, E. T., Çapraz, Ö., & Deniz, A. (2020). Mega Şehir İstanbul İçin Ekstrem Basınç Değerlerinde Partikül Madde (PM10) Değişiminin Araştırılması. Journal of Anatolian Environmental and Animal Sciences, 5(4), 484–490. https://doi.org/10.35229/jaes.759153

    Article  Google Scholar 

  • Özdemir, E. T., Deniz, A., Yavuz, V., Doğan, N., & Akbayır, İ. (2018). Investigation of Fog-Air Quality Relationship in Istanbul. Fresenius Environmental Bulletin, 27(1), 30–36.

    Google Scholar 

  • Plocoste, T., Calif, R., Euphrasie-Clotilde, L., & Brute, F. N. (2020). Investigation of local correlations between particulate matter (PM10) and air temperature in the Caribbean basin using Ensemble Empirical Mode Decomposition. Atmospheric Pollution Research, 11(10), 1692–1704. https://doi.org/10.1016/j.apr.2020.06.031

    Article  CAS  Google Scholar 

  • Plocoste, T., Dorville, J. F., Monjoly, S., Jacoby-Koaly, S., & André, M. (2018). Assessment of nitrogen oxides and ground-level ozone behavior in a dense air quality station network: Case study in the Lesser Antilles Arc. Journal of the Air & Waste Management Association, 68(12), 1278–1300. https://doi.org/10.1080/10962247.2018.1471428

    Article  CAS  Google Scholar 

  • Rojas, A. L. P., Borge, R., Mazzeo, N. A., Saurral, R. I., Matarazzo, B. N., Cordero, J. M., & Kropff, E. (2020). High PM10 concentrations in the city of Buenos Aires and their relationship with meteorological conditions. Atmospheric Environment, 241, 117773.

    Article  Google Scholar 

  • Romero, Y., Chicchon, N., Duarte, F., Noel, J., Ratti, C., & Nyhan, M. (2020). Quantifying and spatial disaggregation of air pollution emissions from ground transportation in a developing country context: Case study for the Lima Metropolitan Area in Peru. Science of the Total Environment, 698, 134313. https://doi.org/10.1016/j.scitotenv.2019.134313

    Article  CAS  Google Scholar 

  • Samek, L., Styszko, K., Stegowski, Z., Zimnoch, M., Skiba, A., Turek-Fijak, A., & Rozanski, K. (2021). Comparison of PM10 sources at traffic and urban background sites based on elemental, chemical and isotopic composition: Case study from Krakow, Southern Poland. Atmosphere, 12(10), 1364.

    Article  CAS  Google Scholar 

  • Saxena, P., Sonwani, S., Srivastava, A., Jain, M., Srivastava, A., Bharti, A., ... & Bhardwaj, S. (2021). Impact of crop residue burning in Haryana on the air quality of Delhi, India. Heliyon7(5), e06973.

  • Shakerkhatibi, M., Dianat, I., AsghariJafarabadi, M., Azak, R., & Kousha, A. (2015). Air pollution and hospital admissions for cardiorespiratory diseases in Iran: Artificial neural network versus conditional logistic regression. International Journal of Environmental Science and Technology, 12(11), 3433–3442. https://doi.org/10.1038/s41598-021-94925-8

    Article  CAS  Google Scholar 

  • Topcu, S., Anteplioglu, U., & Incecik, S. (2003). Surface ozone concentrations and its relation to wind field in Istanbul. Water, Air, & Soil Pollution: Focus, 3(5), 53–64.

    CAS  Google Scholar 

  • TUIK. (2022). https://www.tuik.gov.tr/. Accessed on 10.12.2022.

  • Ulutaş, K., Abujayyab, S. K., & Salem, A. B. U. (2021). Major air pollutants, levels, temporal changes and interactions with meteorological variables in Ankara. Mühendislik Bilimleri ve Tasarım Dergisi, 9(4), 1284–1295. https://doi.org/10.21923/jesd.939724

    Article  Google Scholar 

  • Yamaji, K., Li, J., Uno, I., Kanaya, Y., Irie, H., Takigawa, M., ... & Akimoto, H. (2010). Impact of open crop residual burning on air quality over Central Eastern China during the Mount Tai Experiment 2006 (MTX2006). Atmospheric Chemistry and Physics, 10(15), 7353-7368. https://doi.org/10.5194/acp-10-7353-2010

  • Zarei, A. R., Mahmoudi, M. R., & Shabani, A. (2021). Investigating of the climatic parameters effectiveness rate on barley water requirement using the random forest algorithm, Bayesian multiple linear regression and cross-correlation function. Paddy and Water Environment, 19(1), 137–148. https://doi.org/10.1007/s10333-020-00825-4

    Article  Google Scholar 

  • Zhou, H., Deng, Z., Xia, Y., & Fu, M. (2016). A new sampling method in particle filter based on Pearson correlation coefficient. Neurocomputing, 216, 208–215. https://doi.org/10.1016/j.neucom.2016.07.036

    Article  Google Scholar 

Download references

Acknowledgements

We thank to the Istanbul Metropolitan Municipality, who supported the PM10 data, and Mahmut Doğan, who helped during the data transfer. Also, we thank to Associate Professor Barış Önol for helping with the visualization of the data and Dr. Huseyin Ozdemir and Dr. Özkan Çapraz for their valuable comments. Moreover, we thank the editor and reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

In the study, all authors contributed to the study’s conception and design. EB and ETÖ wrote the first draft of the manuscript, and all authors checked the manuscript and made additions and corrections. EB performed the visualization and calculations on the computer. Then, ETÖ and AD interpreted graphics and visuals. All authors read and approved the final manuscript. Conceptualization: EB, ETÖ, AD; Methodology: EB; Formal analysis and investigation: ETÖ, AD; Writing Original draft preparation: EB, ETÖ; Writing—review and editing: EB, ETÖ, AD; Supervision: ETÖ, AD.

Corresponding author

Correspondence to Enes Birinci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

No formal ethical approval is required.

Consent to participate

All authors participated and contributed to the study.

Consent for publication

The authors read and approved the final version of the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birinci, E., Deniz, A. & Özdemir, E.T. The relationship between PM10 and meteorological variables in the mega city Istanbul. Environ Monit Assess 195, 304 (2023). https://doi.org/10.1007/s10661-022-10866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10866-3

Keywords

Navigation