Skip to main content

Advertisement

Log in

Monitoring land use land cover changes and its impacts on land surface temperature over Mardan and Charsadda Districts, Khyber Pakhtunkhwa (KP), Pakistan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Land use/land cover (LULC) changes due to urban growth on the regional scale affect land surface temperature (LST). The present study aims to assess the LULC changes and their impact on LST over Mardan and Charsadda districts of Khyber Pakhtunkhwa (KP), Pakistan, in the period from 1990 to 2019. Landsat satellite (TM& ETM +) datasets in the period from 1990 to 2010 and Sentinel-2 images from 2016 to 2019 were used in this study. All the datasets were pre-processed and the LULC types were classified by maximum likelihood classification algorithm. The vegetation degradation was computed from normalized difference vegetation index (NDVI), and the LST was derived based on the LULC changes. The results showed that the overall accuracy of LULC classification was 87.84%. Dramatic LULC changes were observed during the last three decades, where the vegetation degradation area was decreased from 1307.8 (59.27%) to 1147.6 km2 (52.1%) and the barren land area increased from 816.6 (37.07%) to 961.4 km2 (42.64%). Similarly, the built-up area has also increased from 57.2 (2.5%) to 104.3 km2 (4.73%) in the years 1990 and 2019, respectively. These variations in LULC types have significantly influenced the LST from 1990 to 2019; specifically, the LST of built-up area, barren land, and vegetation cover increased from 20.1 to 32.1 °C, 21.5 to 35.5 °C, and 17.1 to 28.2 °C, respectively. The regression line plotted defines that the LST has a negative correlation with NDVI and a positive correlation with normalized difference of built-up index (NDBI). In particular, the vegetation and land covers dramatically transformed to barren land and/or to urban development over the study area in the period from 1990 to2019, which has severely affected the LST and the natural resources of the study area. Therefore, our study will be very helpful for managing the rapid environmental changes and urban planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

All the authors have confirmed that the data supporting the results obtained from this study are present in this article.

References

  • Abdul Athick, A. S. M., Shankar, K., & Naqvi, H. R. (2019). Data on time series analysis of land surface temperature variation in response to vegetation indices in twelve Wereda of Ethiopia using mono window, split window algorithm and spectral radiance model. Data in Brief. https://doi.org/10.1016/j.dib.2019.104773

    Article  Google Scholar 

  • Akinyemi, F. O., Ikanyeng, M., & Muro, J. (2019). Land cover change effects on land surface temperature trends in an African urbanizing dryland region. City and Environment Interactions. https://doi.org/10.1016/j.cacint.2020.100029

    Article  Google Scholar 

  • Alharthi, A., El-Sheikh, M. A., Elhag, M., Alatar, A. A., Abbadi, G. A., Abdel-Salam, E. M., Arif, I. A., Baeshen, A. A., & Eid, E. M. (2020). Remote sensing of 10 years changes in the vegetation cover of the northwestern coastal land of Red Sea, Saudi Arabia. Saudi Journal of Biological Sciences, 27(11). https://doi.org/10.1016/j.sjbs.2020.07.021

  • Ali, M. Z., Qazi, W., & Aslam, N. (2018). A comparative study of ALOS-2 PALSAR and landsat-8 imagery for land cover classification using maximum likelihood classifier. Egyptian Journal of Remote Sensing and Space Science. https://doi.org/10.1016/j.ejrs.2018.03.003

    Article  Google Scholar 

  • al Kafy, A., Al-Faisal, A., Mahmudul Hasan, M., Sikdar, Md. S., Hasan Khan, M. H., Rahman, M., & Islam, R. (2020). Impact of LULC changes on LST in Rajshahi District of Bangladesh: A remote sensing approach. Journal of Geographical Studies, 3(1). https://doi.org/10.21523/gcj5.19030102

  • Aredehey, G., Mezgebu, A., & Girma, A. (2020). The effects of land use land cover change on hydrological flow in Giba catchment, Tigray, Ethiopia. Cogent Environmental Science, 6(1). https://doi.org/10.1080/23311843.2020.1785780

  • Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors. https://doi.org/10.1155/2016/1480307

    Article  Google Scholar 

  • Batisani, N., & Yarnal, B. (2009). Urban expansion in Centre County, Pennsylvania: Spatial dynamics and landscape transformations. Applied Geography, 29(2). https://doi.org/10.1016/j.apgeog.2008.08.007

  • Bhandari, S., Phinn, S., & Gill, T. (2012). Preparing Landsat Image Time Series (LITS) for monitoring changes in vegetation phenology in Queensland, Australia. Remote Sensing, 4(6). https://doi.org/10.3390/rs4061856

  • Cetin, M. (n.d.). The effect of urban planning on urban formations determining bioclimatic comfort area’s effect using satellitia imagines on air quality: A case study of Bursa city. https://doi.org/10.1007/s11869-019-00742-4

  • Cetin, M. (2015). Determining the bioclimatic comfort in Kastamonu City. Environmental Monitoring and Assessment, 187(10). https://doi.org/10.1007/S10661-015-4861-3

  • Cetin, M. (2019). The effect of urban planning on urban formations determining bioclimatic comfort area’s effect using satellitia imagines on air quality: A case study of Bursa city. Air Quality, Atmosphere and Health, 12(10), 1237–1249. https://doi.org/10.1007/S11869-019-00742-4/FIGURES/8

    Article  CAS  Google Scholar 

  • Chamling, M., & Bera, B. (2020). Spatio-temporal patterns of land use/land cover change in the Bhutan–Bengal Foothill region between 1987 and 2019: Study towards geospatial applications and policy making. Earth Systems and Environment, 4(1). https://doi.org/10.1007/s41748-020-00150-0

  • Che, M., Vizziello, A., & Gamba, P. (2021). Urban change pattern exploration of megacities using Multitemporal Nighttime Light and Sentinel-1 SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2021.3119419

    Article  Google Scholar 

  • Chrysoulakis, N., Abrams, M., Feidas, H., & Arai, K. (2010). Comparison of atmospheric correction methods using ASTER data for the area of Crete, Greece. International Journal of Remote Sensing, 31(24). https://doi.org/10.1080/01431160903413697

  • Corner, R. J., Dewan, A. M., & Chakma, S. (2014). Monitoring and prediction of land-use and land-cover (LULC) change. Dhaka Megacity: Geospatial Perspectives on Urbanisation, Environment and Health. https://doi.org/10.1007/978-94-007-6735-5_5

    Article  Google Scholar 

  • Das, T., Jana, A., Mandal, B., & Sutradhar, A. (2021). S patio-temporal pattern of land use and land cover and its effects on land surface temperature using remote sensing and GIS techniques: A case study of Bhubaneswar city, Eastern India (1991–2021). GeoJournal. https://doi.org/10.1007/s10708-021-10541-z

    Article  Google Scholar 

  • Dhanaraj, K., & Angadi, D. P. (2020). Land use land cover mapping and monitoring urban growth using remote sensing and GIS techniques in Mangaluru. GeoJournal. https://doi.org/10.1007/s10708-020-10302-4

    Book  Google Scholar 

  • Fida, M., Hussain, I., Tao, W., Rashid, A., & Ali Shah, S. A. (2020). Land use and land cover change analysis of District Charsadda, Pakistan along Kabul River in 2010 flood: Using an advance geographic information system and remote sensing techniques. Natural Hazards and Earth System Sciences Discussions. https://doi.org/10.5194/NHESS-2020-255

  • Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M. D., Neigh, C. S. R., & Reichstein, M. (2013). Trend Change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sensing, 5(5). https://doi.org/10.3390/rs5052113

  • Fu, P., & Weng, Q. (2016). A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2015.12.040

  • Garrigues, S., Allard, D., & Baret, F. (2007). Using first- And second-order variograms for characterizing landscape spatial structures from remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 45(6). https://doi.org/10.1109/TGRS.2007.894572

  • Gilani, H., Shrestha, H. L., Murthy, M. S. R., Phuntso, P., Pradhan, S., Bajracharya, B., & Shrestha, B. (2015). Decadal land cover change dynamics in Bhutan. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2014.02.014

    Article  Google Scholar 

  • Gilpin, S., Rieckh, T., & Anthes, R. (2018). Reducing representativeness and sampling errors in radio occultation-radiosonde comparisons. Atmospheric Measurement Techniques, 11(5). https://doi.org/10.5194/amt-11-2567-2018

  • Giuliani, G., Chatenoux, B., Benvenuti, A., Lacroix, P., Santoro, M., & Mazzetti, P. (2020). Monitoring land degradation at national level using satellite Earth Observation time-series data to support SDG15–exploring the potential of data cube. Big Earth Data, 4(1). https://doi.org/10.1080/20964471.2020.1711633

  • Gogoi, P. P., Vinoj, V., Swain, D., Roberts, G., Dash, J., & Tripathy, S. (2019). Land use and land cover change effect on surface temperature over Eastern India. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45213-z

  • Guha, S., Govil, H., Dey, A., & Gill, N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51(1). https://doi.org/10.1080/22797254.2018.1474494

  • Guha, S., Govil, H., & Diwan, P. (2020). Monitoring LST-NDVI Relationship Using Premonsoon Landsat Datasets. Advances in Meteorology. https://doi.org/10.1155/2020/4539684

    Article  Google Scholar 

  • Gu, J., & Congalton, R. G. (2020). Analysis of the impact of positional accuracy when using a single pixel for thematic accuracy assessment. Remote Sensing, 12(24). https://doi.org/10.3390/rs12244093

  • Ho, H. C., Knudby, A., Sirovyak, P., Xu, Y., Hodul, M., & Henderson, S. B. (2014). Mapping maximum urban air temperature on hot summer days. Remote Sensing of Environment, 154, 38–45. https://doi.org/10.1016/J.RSE.2014.08.012

    Article  Google Scholar 

  • Hua, A. K., & Ping, O. W. (2018). The influence of land-use/land-cover changes on land surface temperature: A case study of Kuala Lumpur metropolitan city. European Journal of Remote Sensing, 51(1). https://doi.org/10.1080/22797254.2018.1542976

  • Huang, H., Chen, Y., Clinton, N., Wang, J., Wang, X., Liu, C., Gong, P., Yang, J., Bai, Y., Zheng, Y., & Zhu, Z. (2017). Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2017.02.021

    Article  Google Scholar 

  • Hussain, M., Tayyab, M., Zhang, J., Shah, A. A., Ullah, K., Mehmood, U., & Al‐shaibah, B. (2021). Gis‐based multi‐criteria approach for flood vulnerability assessment and mapping in district Shangla: Khyber Pakhtunkhwa, Pakistan. Sustainability (Switzerland), 13(6). https://doi.org/10.3390/SU13063126

  • Hussain, S., & Karuppannan, S. (2021). Land use/land cover changes and their impact on land surface temperature using remote sensing technique in district Khanewal, Punjab Pakistan. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2021.1923272

  • Hussain, S., Mubeen, M., Ahmad, A., Akram, W., Hammad, H. M., Ali, M., Masood, N., Amin, A., Farid, H. U., Sultana, S. R., Fahad, S., Wang, D., & Nasim, W. (2020a). Using GIS tools to detect the land use/land cover changes during forty years in Lodhran District of Pakistan. Environmental Science and Pollution Research, 27(32). https://doi.org/10.1007/s11356-019-06072-3

  • Hussain, S., Mubeen, M., Akram, W., Ahmad, A., Habib-ur-Rahman, M., Ghaffar, A., Amin, A., Awais, M., Farid, H. U., Farooq, A., & Nasim, W. (2020b). Study of land cover/land use changes using RS and GIS: A case study of Multan district, Pakistan. Environmental Monitoring and Assessment, 192(1). https://doi.org/10.1007/s10661-019-7959-1

  • Huyen, N. T. (2016). Assessing the impacts of land use and climate change on soil and water resources in the Srepok watershed, Central Highland, Vietnam. Policy Brief Series - Southeast Asian Regional Center for Graduate Study and Research in Agriculture (SEARCA), 2.

  • Iqbal, M. S., Dahri, Z. H., Querner, E. P., Khan, A., & Hofstra, N. (2018). Impact of climate change on flood frequency and intensity in the kabul river basin. Geosciences (Switzerland), 8(4). https://doi.org/10.3390/GEOSCIENCES8040114

  • Jiménez-Muñoz, J. C., Sobrino, J. A., Plaza, A., Guanter, L., Moreno, J., & Martínez, P. (2009). Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors, 9(2). https://doi.org/10.3390/s90200768

  • Junier, T., Hervé, V., Wunderlin, T., & Junier, P. (2015). MLgsc: A maximum-likelihood general sequence classifier. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0129384

  • Khan, R., Li, H., Afzal, Z., Basir, M., Arif, M., & Hassan, W. (2021). Monitoring subsidence in urban area by PSInSAR: A case study of Abbottabad city, northern Pakistan. Remote Sensing, 13(9). https://doi.org/10.3390/RS13091651

  • Kirsch, T. D., Wadhwani, C., Sauer, L., Doocy, S., & Catlett, C. (2012). Impact of the 2010 Pakistan Floods on Rural and Urban Populations at Six Months. PLoS Currents. https://doi.org/10.1371/4FDFB212D2432

    Article  Google Scholar 

  • Kumar, S., Meena, R. S., Sheoran, S., Jangir, C. K., Jhariya, M. K., Banerjee, A., & Raj, A. (2022). Remote sensing for agriculture and resource management. Natural Resources Conservation and Advances for Sustainability. https://doi.org/10.1016/B978-0-12-822976-7.00012-0

    Article  Google Scholar 

  • Lillesand. (2010). Accuracy assessment goals : Accuracy assessment • Overview. Kappa. User and Producer Accuracy.

  • Li, X., Chen, H., Liao, H., Hua, W., Sun, S., Ma, H., Li, X., Gao, C., & Zhu, S. (2017). Potential effects of land cover change on temperature extremes over Eurasia: Current versus historical experiments. International Journal of Climatology. https://doi.org/10.1002/joc.4976

    Article  Google Scholar 

  • Lu, X. Y., Chen, X., Zhao, X. L., Lv, D. J., & Zhang, Y. (2021). Assessing the impact of land surface temperature on urban net primary productivity increment based on geographically weighted regression model. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-01757-7

  • Mahiny, A. S., & Turner, B. J. (2007). A comparison of four common atmospheric correction methods. In Photogrammetric Engineering and Remote Sensing (Vol. 73, Issue 4). https://doi.org/10.14358/PERS.73.4.361

  • Malik, M. S., Shukla, J. P., & Mishra, S. (2019). Relationship of LST, NDBI and NDVI using landsat-8 data in Kandaihimmat watershed, Hoshangabad, India. Indian Journal of Geo-Marine Sciences, 48(1).

  • Mallick, S. K., & Rudra, S. (2021). Land use changes and its impact on biophysical environment: Study on a river bank. Egyptian Journal of Remote Sensing and Space Science, 24(3). https://doi.org/10.1016/j.ejrs.2021.11.002

  • Muhammad, Y., Sheng, H., Sami, U., Rahman, I., Atif, Z., & Asif., M. (2020). Estimation of land surface temperature using LANDSAT-8 data-A case study of District Malakand, Khyber Pakhtunkhwa, Pakistan. Journal of Liberal Arts and Humanities, 1(4).

  • Mutiibwa, D., Strachan, S., & Albright, T. (2015). Land surface temperature and surface air temperature in complex terrain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(10). https://doi.org/10.1109/JSTARS.2015.2468594

  • Nazir, N., Farooq, A., Ahmad Jan, S., & Ahmad, A. (2019). A system dynamics model for billion trees tsunami afforestation project of Khyber Pakhtunkhwa in Pakistan: Model application to afforestation activities. Journal of Mountain Science, 16(11), 2640–2653. https://doi.org/10.1007/S11629-018-5076-1

    Article  Google Scholar 

  • Nogueira, M., Albergel, C., Boussetta, S., Johannsen, F., Trigo, I. F., Ermida, S. L., Martins, J. P. A., & Dutra, E. (2020). Role of vegetation in representing land surface temperature in the CHTESSEL (CY45R1) and SURFEX-ISBA (v8.1) land surface models: A case study over Iberia. Geoscientific Model Development, 13(9), 3975–3993. https://doi.org/10.5194/GMD-13-3975-2020

  • Omran, E.-S. E. (2012). Detection of land-use and surface temperature change at different resolutions. Journal of Geographic Information System, 04(03). https://doi.org/10.4236/jgis.2012.43024

  • Panuju, D. R., Paull, D. J., & Griffin, A. L. (2020). Change detection techniques based on multispectral images for investigating land cover dynamics. In Remote Sensing (Vol. 12, Issue 11). https://doi.org/10.3390/rs12111781

  • Paolini, L., Grings, F., Sobrino, J., Jiménez Muñoz, J. C., & Karszenbaum, H. (2006). Radiometric correction effects in Landsat multi-date/multi-sensor change detection studies. International Journal of Remote Sensing, 27(4). https://doi.org/10.1080/01431160500183057

  • Parveen, S., Basheer, J., & Praveen, B. (2018). A literature review on land use land cover changes. International Journal of Advanced Research, 6(7), 1–6. https://doi.org/10.21474/IJAR01/7327

  • Putri, D. R., Ismail, N., Idroes, R., Rizal, S., Nur, S., & Nanda, M. (2021). Analysis of land surface temperature (LST) in Bur Ni Geureudong Geothermal Field, Aceh, Indonesia Using Landsat 8 OLI / TIRS Images. Chiang Mai University Journal of Natural Sciences, 20(4). https://doi.org/10.12982/CMUJNS.2021.084

  • Rahman, M. N. (2019). Urban expansion analysis and land use changes in Rangpur City Corporation Area, Bangladesh, using remote sensing (RS) and geographic information system (GIS) techniques. Geosfera Indonesia, 4(3). https://doi.org/10.19184/geosi.v4i3.13921

  • Rasheed, H., & Naz, A. (2017). Modeling the rice land suitability using GIS and multi-criteria decision analysis approach in Sindh, Pakistan. Journal of Basic & Applied Sciences, 13, 26–33. https://doi.org/10.6000/1927-5129.2017.13.05

    Article  Google Scholar 

  • Rasul, A., Ibrahim, S., Onojeghuo, A. R., & Balzter, H. (2020). A trend analysis of leaf area index and land surface temperature and their relationship from global to local scale. Land, 9(10). https://doi.org/10.3390/land9100388

  • Rebinth, A., Kumar, S. M., Kumanan, T., & Varaprasad, G. (2021). Glaucoma image classification using entropy feature and maximum likelihood classifier. Journal of Physics: Conference Series, 1964(4). https://doi.org/10.1088/1742-6596/1964/4/042075

  • Rizvi, S. H., Fatima, H., Alam, K., & Iqbal, M. J. (2021). The surface urban heat island intensity and urban expansion: A comparative analysis for the coastal areas of Pakistan. Environment, Development and Sustainability, 23(4). https://doi.org/10.1007/s10668-020-00828-5

  • Sabir, M., Ali, Y., Khan, I., & Salman, A. (2020). Plants species selection for afforestation: A case study of the Billion Tree Tsunami Project of Pakistan. Journal of Sustainable Forestry. https://doi.org/10.1080/10549811.2020.1830802

    Article  Google Scholar 

  • Sahin, G., Cabuk, S. N., & Cetin, M. (2021a). The change detection in coastal settlements using image processing techniques: A case study of Korfez. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-021-16660-x

    Article  Google Scholar 

  • Sahin, G., Cabuk, S. N., & Cetin, M. (2021b). The change detection in coastal settlements using image processing techniques: A case study of Korfez. Environmental Science and Pollution Research, 29(10), 15172–15187. https://doi.org/10.1007/S11356-021-16660-X/TABLES/5

    Article  Google Scholar 

  • Schlögl, S., Lehning, M., & Mott, R. (2018). How are turbulent sensible heat fluxes and snow melt rates affected by a changing snow cover fraction? Frontiers in Earth Science. https://doi.org/10.3389/feart.2018.00154

    Article  Google Scholar 

  • Semenzato, A., Pappalardo, S. E., Codato, D., Trivelloni, U., de Zorzi, S., Ferrari, S., de Marchi, M., & Massironi, M. (2020). Mapping and monitoring urban environment through sentinel-1 SAR data: A case study in the Veneto region (Italy). ISPRS International Journal of Geo-Information, 9(6). https://doi.org/10.3390/ijgi9060375

  • Shukla, A., & Jain, K. (2019). Modeling urban growth trajectories and spatiotemporal pattern: A case study of Lucknow City, India. Journal of the Indian Society of Remote Sensing, 47(1). https://doi.org/10.1007/s12524-018-0880-1

  • Sisodia, P. S., Tiwari, V., & Kumar, A. (2014). Analysis of Supervised Maximum Likelihood Classification for remote sensing image. International Conference on Recent Advances and Innovations in Engineering, ICRAIE. https://doi.org/10.1109/ICRAIE.2014.6909319

    Article  Google Scholar 

  • Sun, D., & Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letters, 34(24). https://doi.org/10.1029/2007GL031485

  • Tayyab, M., Zhang, J., Hussain, M., Ullah, S., Liu, X., Khan, S. N., Baig, M. A., Hassan, W., & Al-Shaibah, B. (2021). Gis-based urban flood resilience assessment using urban flood resilience model: A case study of peshawar city, khyber pakhtunkhwa, pakistan. Remote Sensing, 13(10). https://doi.org/10.3390/RS13101864

  • T. Bibi, F. N. (2018). Flood risk assessment of river Kabul and swat catchment area: District Charsadda, Pakistan. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 9. https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-4-W9/105/2018/isprs-archives-XLII-4-W9-105-2018.pdf

  • Tewabe, D., & Fentahun, T. (2020). Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia. Cogent Environmental Science, 6(1). https://doi.org/10.1080/23311843.2020.1778998

  • Thompson, A. W., & Prokopy, L. S. (2009). Tracking urban sprawl: Using spatial data to inform farmland preservation policy. Land Use Policy, 26(2). https://doi.org/10.1016/j.landusepol.2008.02.005

  • Turok, I., & Mykhnenko, V. (2007). The trajectories of European cities, 1960–2005. Cities, 24(3). https://doi.org/10.1016/j.cities.2007.01.007

  • UN. (2015). World Urbanization Prospects: United Nations Department of Economic and Social Affairs Population Division. In Demographic Research.

  • Vittek, M., Brink, A., Donnay, F., Simonetti, D., & Desclée, B. (2013). Land cover change monitoring using landsat MSS/TM satellite image data over west Africa between 1975 and 1990. Remote Sensing, 6(1). https://doi.org/10.3390/rs6010658

  • Wang, Y. C., Hu, B. K. H., Myint, S. W., Feng, C. C., Chow, W. T. L., & Passy, P. F. (2018). Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.06.209

  • Waqas, H., Lu, L., Tariq, A., Li, Q., Baqa, M. F., Xing, J., & Sajjad, A. (2021). Flash flood susceptibility assessment and zonation using an integrating analytic hierarchy process and frequency ratio model for the chitral district, khyber pakhtunkhwa, pakistan. Water (Switzerland), 13(12). https://doi.org/10.3390/W13121650

  • Writing, C., Walter, T., Mooney, H. A., Cropper, A., Capistrano, D., Carpenter, S. R., Chopra, K., Dasgupta, P., Dietz, T., Kumar, A., Hassan, R., Kasperson, R., Leemans, R., May, R. M., Tony, A. J., Pingali, P., Samper, C., Scholes, R., Watson, R. T., … Zurek, M. B. (2005). Millennium Ecosystem Assessment Synthesis Report A Report of the Millennium Ecosystem Assessment. Public Health.

  • Xie, Y., Zhao, X., Li, L., & Wang, H. (2010). Calculating NDVI for landsat7-ETM data after atmospheric correction using 6S model: A case study in Zhangye City, China. 2010 18th International Conference on Geoinformatics, Geoinformatics 2010. https://doi.org/10.1109/GEOINFORMATICS.2010.5567553

  • Xu, L., Li, B., Yuan, Y., Gao, X., Zhang, T., & Sun, Q. (2016). Detecting different types of directional land cover changes Using MODIS NDVI time series dataset. Remote Sensing, 8(6). https://doi.org/10.3390/rs8060495

  • Yamashita, S. (1996). Detailed structure of heat island phenomena from moving observations from electric tram-cars in metropolitan Tokyo. Atmospheric Environment, 30(3). https://doi.org/10.1016/1352-2310(95)00010-0

  • Yang, J., Ren, J., Sun, D., Xiao, X., Xia, J. (Cecilia), Jin, C., & Li, X. (2021). Understanding land surface temperature impact factors based on local climate zones. Sustainable Cities and Society, 69, 102818. https://doi.org/10.1016/J.SCS.2021.102818

  • Yang, Y. Z., Cai, W. H., & Yang, J. (2017). Evaluation of MODIS land surface temperature data to estimate near-surface air temperature in Northeast China. Remote Sensing, 9(5). https://doi.org/10.3390/rs9050410

  • Yar, P. (2020). Urban development and its impact on the depletion of groundwater aquifers in Mardan City, Pakistan. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2020.100426

    Article  Google Scholar 

  • Yar, P., Atta-ur-Rahman, Khan, M. A., Samiullah, & Akhtar Ali Shah, S. (2016). Spatio-temporal analysis of urban expansion on farmland and its impact on the agricultural land use of Mardan city, Pakistan. Proceedings of the Pakistan Academy of Sciences: Part B, 53(1B).

  • Zelelew, S. A., Abebe, W. B., & Amsalu, T. (2021). Land-use cover change impact on Cranes nesting space in the Lake Tana Biosphere Reserve area, Blue Nile Basin. Wetlands Ecology and Management, 29(4). https://doi.org/10.1007/s11273-021-09796-7

  • Zhong, Y., Meng, L., Wei, Z., Yang, J., Song, W., & Basir, M. (2021). Retrieval of all-weather 1 km land surface temperature from combined modis and amsr2 data over the tibetan plateau. Remote Sensing, 13(22). https://doi.org/10.3390/rs13224574

  • Zoungrana, B. J. B., Conrad, C., Thiel, M., Amekudzi, L. K., & Da, E. D. (2018). MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. Journal of Arid Environments. https://doi.org/10.1016/j.jaridenv.2018.01.005

    Article  Google Scholar 

Download references

Acknowledgements

We highly appreciate Dr. Jeffery Dick for his valuable suggestion and comments that have helped us to significantly improve the English quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R., Li, H., Basir, M. et al. Monitoring land use land cover changes and its impacts on land surface temperature over Mardan and Charsadda Districts, Khyber Pakhtunkhwa (KP), Pakistan. Environ Monit Assess 194, 409 (2022). https://doi.org/10.1007/s10661-022-10072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10072-1

Keywords

Navigation