Skip to main content

Advertisement

Log in

District-based urban expansion monitoring using multitemporal satellite data: application in two mega cities

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Urban expansion is a process of urban development as a result of population growth. Urban sprawl, known as unplanned and unrestricted urban expansion, is among the most important topics in urban studies. In recent decades, many cities around the world in both developing and developed countries have experienced urban expansion. Istanbul and Sydney are two of those cities encountering the urban expansion. Thus, in this study, the spatial and temporal pattern of urban expansion of the most urbanized districts of Istanbul (Arnavutköy) and Sydney (Hills Shire) was analyzed using multi-temporal remote sensing data. Initially, the Landsat images were classified to evaluate the land use/land cover (LULC) changes. The change detection analysis revealed that urban area of Arnavutköy district has increased about 669% from 1997 to 2017 and urban area of Hills Shire Local Government Area (LGA) increased by 78% between 1996 and 2018. The relationship of land surface temperature (LST) and urban areas extracted by recoding the LULC maps was also evaluated in different buffer zones. The results showed that with the increase in urban area extent, the LST has also increased. Then, Shannon’s entropy and spatial landscape metrics were used to analyze the district-based urban expansion. The results showed that both study areas expanded over the time but the main differences observed are that Arnavutköy has more fragmented and Hills Shire has a more compact urban growth process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Abdullahi, S., & Pradhan, B. (2017). Urban expansion and change detection analysis (pp. 155–170). Springer.

    Google Scholar 

  • Abebe, G. A. (2013). “Quantifying urban growth pattern in developing countries using remote sensing and spatial metrics: a case study in Kampala, Uganda”, University of Twente.

  • Abir, F. A., & Saha R. (2021). “Assessment of land surface temperature and land cover variability during winter: a spatio-temporal analysis of Pabna municipality in Bangladesh.” Environmental Challenges, 100167.

  • Aburas, M. M., Ho, Y. M., Ramli, M. F., & Z. H. Ash’aari,. (2018). Monitoring and assessment of urban growth patterns using spatio-temporal built-up area analysis. Environmental Monitoring and Assessment, 190(3), 156.

    Article  Google Scholar 

  • Ahmad, A., & Quegan, S. (2012). Analysis of maximum likelihood classification on multispectral data. Applied Mathematical Sciences, 6(129), 6425–6436.

    Google Scholar 

  • Akın, A., Sunar, F., & Berberoğlu, S. (2015). Urban change analysis and future growth of Istanbul. Environmental Monitoring and Assessment, 187(8), 506.

    Article  Google Scholar 

  • Akintunde, J. (2019). Spatial pattern of urban growth using remote sensing and landscape metrics. Journal of Geomatics, 13(1), 53.

    Google Scholar 

  • Akyürek, D., Koç, Ö., Akbaba, E., & Sunar, F. (2018). “Land use/land cover change detection using multi-temporal satellite dataset: A case study in Istanbul new airport. ” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 42, 17–22.

    Article  Google Scholar 

  • Al-Bilbisi, H. (2019). Spatial monitoring of urban expansion using satellite remote sensing images: A case study of Amman City, Jordan. Sustainability, 11(8), 2260.

    Article  Google Scholar 

  • Al-Sharif, A. A., Pradhan, B., Shafri, H. Z. M., & Mansor S. (2014). Quantitative analysis of urban sprawl in Tripoli using Pearson’s chi-square statistics and urban expansion intensity index. IOP Conference Series: Earth and Environmental Science, IOP Publishing.

  • Alsharif, A. A., Pradhan, B., Mansor, S., & Shafri, H. Z. M. (2015). Urban expansion assessment by using remotely sensed data and the relative Shannon entropy model in GIS: A case study of Tripoli, Libya. Theoretical and Empirical Researches in Urban Management, 10(1), 55–71.

    Google Scholar 

  • Angel, S., Parent, J., Civco, D. L., Blei, A., & Potere, D. (2011). The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Progress in Planning, 75(2), 53–107.

    Article  Google Scholar 

  • Araya, Y. H., & Cabral, P. (2010). Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sensing, 2(6), 1549–1563.

    Article  Google Scholar 

  • Asokan, A., & Anitha, J. (2019). Change detection techniques for remote sensing applications: A survey. Earth Science Informatics, 12(2), 143–160.

    Article  Google Scholar 

  • Australia, I. (2018). “Future Cities: planning for our growing population.” Australian Government.

  • Barnes, K. B., Morgan, J. M., III., Roberge, M. C., & Lowe, S. (2001). Sprawl development: Its patterns, consequences, and measurement. Towson University, Towson, 1, 24.

    Google Scholar 

  • Berberoglu, S., & Akin, A. (2009). Assessing different remote sensing techniques to detect land use/cover changes in the eastern Mediterranean. International Journal of Applied Earth Observation and Geoinformation, 11(1), 46–53.

    Article  Google Scholar 

  • Bharath, H., Chandan, M., Vinay, S., & Ramachandra, T. (2017). Modelling the growth of two rapidly urbanizing Indian cities. Journal of Geomatics, 11(12), 149–166.

    Google Scholar 

  • Bhatta, B. (2009). Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. International Journal of Remote Sensing, 30(18), 4733–4746.

    Article  Google Scholar 

  • Bhatta, B., Saraswati, S., & Bandyopadhyay D. (2010a). “Quantifying the degree-of-freedom, degree-of-sprawl, and degree-of-goodness of urban growth from remote sensing data.” Applied Geography 30(1), 96–111.

  • Bhatta, B., S. Saraswati, S., & Bandyopadhyay, D. (2010b). “Urban sprawl measurement from remote sensing data.” Applied Geography, 30(4), 731–740.

  • Borana, S., Vaishnav, A., Yadav, S., & Parihar, S.  (2020). Urban growth assessment using remote sensing, GIS and Shannon’s entropy model: a case study of Bhilwara city, Rajasthan. 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE), IEEE.

  • Borana, S., & Yadav, S. (2017). Urban growth analysis using shannon’s entropy: A case study of Jodhpur city. International Journal of Advance Research in Computer Science and Management, 5, 50–57.

    Google Scholar 

  • Chen, Y.-C., Chiu, H.-W., Su, Y.-F., Wu, Y.-C., & Cheng, K.-S. (2017). Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landscape and Urban Planning, 157, 247–258.

    Article  Google Scholar 

  • Çolak, E., & Sunar, F. (2020). “Evaluation of forest fire risk in the Mediterranean Turkish forests: a case study of Menderes region, Izmir.” International journal of disaster risk reduction, 45, 101479.

  • Deng, J. S., Wang, K., Hong, Y., & Qi, J. G. (2009). Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning, 92(3–4), 187–198.

    Article  Google Scholar 

  • Dhanaraj, K., & Angadi, D. P. (2020). “Land use land cover mapping and monitoring urban growth using remote sensing and GIS techniques in Mangaluru, India.” GeoJournal, 1–27.

  • Fonseka, H., Zhang, H., Sun, Y., Su, H., Lin, H., & Lin, Y. (2019). Urbanization and its impacts on land surface temperature in Colombo metropolitan area, Sri Lanka, from 1988 to 2016. Remote Sensing, 11(8), 957.

    Article  Google Scholar 

  • Fu, P., & Weng, Q. (2016). A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175, 205–214.

    Article  Google Scholar 

  • Goldreich, Y. (2006). Ground and top of canopy layer urban heat island partitioning on an airborne image. Remote Sensing of Environment, 104(2), 247–255.

    Article  Google Scholar 

  • Gupta, S., Islam, S., & Hasan, M. M. (2018). Analysis of impervious land-cover expansion using remote sensing and GIS: A case study of Sylhet sadar upazila. Applied Geography, 98, 156–165.

    Article  Google Scholar 

  • Habibi, S., & Asadi, N. (2011). Causes, results and methods of controlling urban sprawl. Procedia Engineering, 21, 133–141.

    Article  Google Scholar 

  • Hashem, N., & Balakrishnan, P. (2015). Change analysis of land use/land cover and modelling urban growth in Greater Doha, Qatar. Annals of GIS, 21(3), 233–247.

    Article  Google Scholar 

  • Herold, M., Couclelis, H., & Clarke, K. C. (2005). The role of spatial metrics in the analysis and modeling of urban land use change. Computers, Environment and Urban Systems, 29(4), 369–399.

    Article  Google Scholar 

  • Jaeger, J. A., Bertiller, R., Schwick, C., & Kienast, F. (2010). Suitability criteria for measures of urban sprawl. Ecological Indicators, 10(2), 397–406.

    Article  Google Scholar 

  • Jat, M. K., Garg, P. K., & Khare, D. (2008). Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. International Journal of Applied Earth Observation and Geoinformation, 10(1), 26–43.

    Article  Google Scholar 

  • Karimi, A., Pahlavani, P., & Bigdeli, B. (2017). “Land use analysis on land surface temperature in urban araes using geographically weighted regression and Landsat 8 imagery, a case study: Tehran, Iran.” International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 42.

  • Khwarahm, N. R., Qader, S., Ararat, K., & Al-Quraishi, A. M. F. (2020). “Predicting and mapping land cover/land use changes in Erbil/Iraq using CA-Markov synergy model.” Earth Science Informatics 1–14.

  • Kumar, J. A. V., Pathan, S., & Bhanderi, R. (2007). Spatio-temporal analysis for monitoring urban growth–a case study of Indore city. Journal of the Indian Society of Remote Sensing, 35(1), 11–20.

    Article  Google Scholar 

  • Lam, N. S.-N. (2008). Methodologies for mapping land cover/land use and its change. Advances in land remote sensing, Springer: 341–367.

  • Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A review of remote sensing image classification techniques: The role of spatio-contextual information. European Journal of Remote Sensing, 47(1), 389–411.

    Article  Google Scholar 

  • Li, X., Zhou, Y., Asrar, G. R., Imhoff, M., & Li, X. (2017). The surface urban heat island response to urban expansion: A panel analysis for the conterminous United States. Science of the Total Environment, 605, 426–435.

    Article  CAS  Google Scholar 

  • Lu, D., Li, G., Kuang, W., & Moran, E. (2014). Methods to extract impervious surface areas from satellite images. International Journal of Digital Earth, 7(2), 93–112.

    Article  Google Scholar 

  • Magidi, J., & Ahmed, F. (2019). Assessing urban sprawl using remote sensing and landscape metrics: A case study of City of Tshwane, South Africa (1984–2015). The Egyptian Journal of Remote Sensing and Space Science, 22(3), 335–346.

    Article  Google Scholar 

  • Masoumi, H. E., & Roque, D. (2015). Evaluation of urban sprawl speed and intensity based on international urbanization. Example from a Mexican city. Journal of Settlements and Spatial Planning, 6(1), 27–35.

    Google Scholar 

  • McGarigal, K. (1995). “FRAGSTATS: spatial pattern analysis program for quantifying landscape structure”, US Department of Agriculture, Forest Service, Pacific Northwest Research Station.

  • McGarigal, K. (2002). “FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced by the authors at the University of Massachusetts, Amherst.”  http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • Mishra, S., Shrivastava, P., & Dhurvey, P. (2017). Change detection techniques in remote sensing: A review. International Journal of Wireless and Mobile Communication for Industrial Systems, 4(1), 1–8.

    Article  Google Scholar 

  • Mohammady, S., & Delavar, M. R. (2016). Urban sprawl assessment and modeling using landsat images and GIS. Modeling Earth Systems and Environment, 2(3), 155.

    Article  Google Scholar 

  • Mosammam, H. M., Nia, J. T., Khani, H., Teymouri, A., & Kazemi, M. (2017). Monitoring land use change and measuring urban sprawl based on its spatial forms: The case of Qom city. The Egyptian Journal of Remote Sensing and Space Science, 20(1), 103–116.

    Article  Google Scholar 

  • Nazarnia, N., Harding, C., & Jaeger, J. A. (2019). How suitable is entropy as a measure of urban sprawl? Landscape and Urban Planning, 184, 32–43.

    Article  Google Scholar 

  • Nong, D. H., Lepczyk, C. A., Miura, T., Fox J. M. (2018). “Quantifying urban growth patterns in Hanoi using landscape expansion modes and time series spatial metrics.” PloS one 13(5), e0196940.

  • Ozturk, D. (2017). Assessment of urban sprawl using Shannon’s entropy and fractal analysis: A case study of Atakum, Ilkadim and Canik (Samsun, Turkey). Journal of Environmental Engineering and Landscape Management, 25(3), 264–276.

    Article  Google Scholar 

  • Patino, J. E., & Duque, J. C. (2013). A review of regional science applications of satellite remote sensing in urban settings. Computers, Environment and Urban Systems, 37, 1–17.

    Article  Google Scholar 

  • Profillidis, V. A., & Botzoris, G. N. (2018). Modeling of transport demand: Analyzing, calculating, and forecasting transport demand. Elsevier.

    Google Scholar 

  • Qin, Z., Karnieli, A., & Berliner, P. (2001). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22(18), 3719–3746.

    Article  Google Scholar 

  • Rahman, M. T. (2016). Detection of land use/land cover changes and urban sprawl in Al-Khobar, Saudi Arabia: An analysis of multi-temporal remote sensing data. ISPRS International Journal of Geo-Information, 5(2), 15.

    Article  Google Scholar 

  • Reis, J. P., Silva, E. A., & Pinho, P. (2016). Spatial metrics to study urban patterns in growing and shrinking cities. Urban Geography, 37(2), 246–271.

    Article  Google Scholar 

  • Ren, P., Gan, S., Yuan, X., Zong, H., & Xie X. (2013). Spatial expansion and sprawl quantitative analysis of mountain city built-up area. Geo-informatics in resource management and sustainable ecosystem, Springer, 166–176.

  • Roy, B., & Kasemi, N. (2021). Monitoring urban growth dynamics using remote sensing and GIS techniques of Raiganj Urban Agglomeration, India. The Egyptian Journal of Remote Sensing and Space Science, 24(2), 221–230.

    Article  Google Scholar 

  • Sahana, M., Ahmed, R., & Sajjad, H. (2016). Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Modeling Earth Systems and Environment, 2(2), 81.

    Article  Google Scholar 

  • Samal, D. R., & Gedam, S. S. (2015). Monitoring land use changes associated with urbanization: An object based image analysis approach. European Journal of Remote Sensing, 48(1), 85–99.

    Article  Google Scholar 

  • Sarvestani, M. S., Ibrahim, A. L., & Kanaroglou, P. (2011). Three decades of urban growth in the city of Shiraz, Iran: A remote sensing and geographic information systems application. Cities, 28(4), 320–329.

    Article  Google Scholar 

  • Shikary, C., & Rudra, S. (2021). Measuring urban land use change and sprawl using geospatial techniques: A study on Purulia Municipality, West Bengal, India. Journal of the Indian Society of Remote Sensing, 49(2), 433–448.

    Article  Google Scholar 

  • Sisodia, P. S., Tiwari, V., & Kumar A. (2014). Analysis of supervised maximum likelihood classification for remote sensing image. International conference on recent advances and innovations in engineering (ICRAIE-2014), IEEE.

  • Son, N.-T., & Thanh, B.-X. (2018). Decadal assessment of urban sprawl and its effects on local temperature using Landsat data in Cantho city, Vietnam. Sustainable Cities and Society, 36, 81–91.

    Article  Google Scholar 

  • Soriano, M., Hilvano, N., Garcia, R., Hao, A. J., Alegre, A., & Tiburan, C., Jr. (2019). Land use/land cover change detection and urban sprawl analysis in the Mount Makiling Forest Reserve watersheds and buffer zone, Philippines. Environments, 6(2), 9.

    Article  Google Scholar 

  • Stathopoulou, M., & Cartalis, C. (2007). Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Solar Energy, 81(3), 358–368.

    Article  Google Scholar 

  • Stone, B., Hess, J. J., & Frumkin, H. (2010). Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities? Environmental Health Perspectives, 118(10), 1425–1428.

    Article  Google Scholar 

  • Sunar, F. (1998). An analysis of changes in a multi-date data set: A case study in the Ikitelli area, Istanbul, Turkey. International Journal of Remote Sensing, 19(2), 225–235.

    Article  Google Scholar 

  • Tewolde, M. G., & Cabral, P. (2011). Urban sprawl analysis and modeling in Asmara, Eritrea. Remote Sensing, 3(10), 2148–2165.

    Article  Google Scholar 

  • USGS. (2019). “Landsat handbook.” from https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-data-users-handbook

  • Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing of Environment, 57(3), 167–184.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86(3), 370–384.

    Article  Google Scholar 

  • Weng, Q. (2001). A remote sensing? GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China. International Journal of Remote Sensing, 22(10), 1999–2014.

    Google Scholar 

  • World Population Review. (2020a). “World population review.” Retrieved April 10, 2020, from https://worldpopulationreview.com/

  • World Population Review. (2020b). “World population review.” Retrieved April 10, 2020, from https://worldpopulationreview.com/world-cities/istanbul-population

  • Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G., Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., & Cohen, W. B. (2019). Current status of Landsat program, science, and applications. Remote Sensing of Environment, 225, 127–147.

    Article  Google Scholar 

  • Yeh, A.G.-O., & Li, X. (2001). Measurement and monitoring of urban sprawl in a rapidly growing region using entropy. Photogrammetric Engineering and Remote Sensing, 67(1), 83–90.

    Google Scholar 

  • Yeh, C.-T., & Huang, S.-L. (2009). Investigating spatiotemporal patterns of landscape diversity in response to urbanization. Landscape and Urban Planning, 93(3–4), 151–162.

    Article  Google Scholar 

  • Yue, W., Liu, Y., & Fan, P. (2013). Measuring urban sprawl and its drivers in large Chinese cities: The case of Hangzhou. Land Use Policy, 31, 358–370.

    Article  Google Scholar 

  • Yulianto, F., Fitriana, H. L., & Sukowati, K. A. D. (2020). Integration of remote sensing, GIS, and Shannon’s entropy approach to conduct trend analysis of the dynamics change in urban/built-up areas in the Upper Citarum River Basin, West Java, Indonesia. Modeling Earth Systems and Environment, 6(1), 383–395.

    Article  Google Scholar 

  • Zhang, L., & Weng, Q. (2016). Annual dynamics of impervious surface in the Pearl River Delta, China, from 1988 to 2013, using time series Landsat imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 113, 86–96.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anali Azabdaftari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azabdaftari, A., Sunar, F. District-based urban expansion monitoring using multitemporal satellite data: application in two mega cities. Environ Monit Assess 194, 335 (2022). https://doi.org/10.1007/s10661-022-09884-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09884-y

Keywords

Navigation