Skip to main content

Advertisement

Log in

Automatic flood detection using sentinel-1 images on the google earth engine

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Flood is considered to be one of the most destructive natural disasters. It is important to detect the flood-affected area in a reasonable time. In March 2019, a severe flood occurred in the north of Iran and lasted for 2 months. In the present paper, this flood event has been monitored by Sentinel-1 images. The Otsu thresholding algorithm has been applied to separate flooded areas from remaining land covers. The threshold value of −14.9 dB was derived and applied to each scene to delineate flooded areas. There was high variability of the inundated area; however, the presented threshold correctly represented the variation of the flood. The resultant maps were further verified by independent datasets. The overall accuracies were higher than 90%, confirming the applicability of the Otsu automatic thresholding method in flood mapping. The automatic approach is efficient in rapid fold mapping across complex landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data are available upon reasonable request.

Code availability

The code is available online at https://code.earthengine.google.com/6dcd097df2c9e9b821858e5046a8b21d

References

  • Aldous, A., Schill, S., Raber, G., Paiz, M. C., Mambela, E., Stévart, T. J. R. S. i. E., et al. (2020). Mapping complex coastal wetland mosaics in Gabon for informed ecosystem management: use of object‐based classification.

  • Anusha, N., & Bharathi, B. (2019). Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. The Egyptian Journal of Remote Sensing and Space Science.

  • Anusha, N., Bharathi, B. J. T. E. J. o. R. S., & Science, S. (2020). Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. 23(2), 207–219.

  • Atanga, R. A. J. I. j. o. d. r. r. (2020). The role of local community leaders in flood disaster risk management strategy making in Accra. 43, 101358.

  • Barredo, J. I. (2007). Major flood disasters in Europe: 1950–2005. Natural Hazards, 42(1), 125–148.

    Article  Google Scholar 

  • Bioresita, F., Puissant, A., Stumpf, A., & Malet, J.-P. J. R. S. (2018). A method for automatic and rapid mapping of water surfaces from sentinel-1 imagery. 10(2), 217.

  • Boni, G., Ferraris, L., Pulvirenti, L., Squicciarino, G., Pierdicca, N., Candela, L., et al. (2016). A prototype system for flood monitoring based on flood forecast combined with COSMO-SkyMed and Sentinel-1 data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6), 2794–2805.

    Article  Google Scholar 

  • Bourenane, H., Bouhadad, Y., & Tas, M. (2018). Liquefaction hazard mapping in the city of Boumerdès, Northern Algeria. Bulletin of Engineering Geology and the Environment, 77(4), 1473–1489.

    Article  Google Scholar 

  • Branton, C., & Robinson, D. T. J. W. (2020). Quantifying topographic characteristics of wetlandscapes., 40(2), 433–449.

    Google Scholar 

  • Brombacher, J., Reiche, J., Dijksma, R., & Teuling, A. J. (2020). Near-daily discharge estimation in high latitudes from Sentinel-1 and 2: a case study for the Icelandic Þjórsá river. Remote sensing of Environment, 241, 111684.

    Article  Google Scholar 

  • Brychta, J., Brychtová, M. J. S., & Research, W. (2020). -Possibilities of including surface runoff barriers in the slope-length factor calculation in the GIS environment and its integration in the user-friendly LS-RUSLE tool.

  • Cao, C., Xu, P., Wang, Y., Chen, J., Zheng, L., & Niu, C. (2016). Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability, 8(9), 948.

    Article  Google Scholar 

  • Cao, H., Zhang, H., Wang, C., & Zhang, B. (2019). Operational flood detection using Sentinel-1 SAR data over large areas. Water, 11(4), 786.

    Article  Google Scholar 

  • Chapi, K., Singh, V. P., Shirzadi, A., Shahabi, H., Bui, D. T., Pham, B. T., et al. (2017). A novel hybrid artificial intelligence approach for flood susceptibility assessment., 95, 229–245.

    Google Scholar 

  • Chini, M., Pelich, R., Pulvirenti, L., Pierdicca, N., Hostache, R., & Matgen, P. (2019). Sentinel-1 InSAR coherence to detect floodwater in urban areas: Houston and Hurricane Harvey as a test case. Remote Sensing, 11(2), 107.

    Article  Google Scholar 

  • Dasgupta, A., Grimaldi, S., Ramsankaran, R., Pauwels, V. R., & Walker, J. P. (2018). Towards operational SAR-based flood mapping using neuro-fuzzy texture-based approaches. Remote sensing of Environment, 215, 313–329.

    Article  Google Scholar 

  • Du, Z., Li, W., Zhou, D., Tian, L., Ling, F., Wang, H., et al. (2014). Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote sensing letters, 5(7), 672–681.

    Article  Google Scholar 

  • Elfadaly, A., Abate, N., Masini, N., & Lasaponara, R. J. R. S. (2020). SAR Sentinel 1 imaging and detection of palaeo-landscape features in the Mediterranean area. 12(16), 2611.

  • Ety, N. J., Chu, Z., & Masum, S. M. J. Q. I. (2020). Monitoring of flood water propagation based on microwave and optical imagery.

  • Filipponi, F. Sentinel-1 GRD preprocessing workflow. In Multidisciplinary Digital Publishing Institute Proceedings, 2019 (Vol. 18, pp. 11, Vol. 1)

  • Foody, G. M. J. R. S. o. E. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. 239, 111630.

  • Fu, W., Ma, J., Chen, P., & Chen, F. (2020). Remote sensing satellites for digital Earth. In Manual of Digital Earth (pp. 55–123): Springer, Singapore.

  • Giustarini, L., Chini, M., Hostache, R., Pappenberger, F., & Matgen, P. J. R. S. (2015). Flood hazard mapping combining hydrodynamic modeling and multi annual remote sensing data., 7(10), 14200–14226.

    Google Scholar 

  • Giustarini, L., Hostache, R., Matgen, P., Schumann, G.J.-P., Bates, P. D., & Mason, D. C. (2012). A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Transactions on Geoscience and Remote Sensing, 51(4), 2417–2430.

    Article  Google Scholar 

  • Grimaldi, S., Xu, J., Li, Y., Pauwels, V. R., & Walker, J. P. (2020). Flood mapping under vegetation using single SAR acquisitions. Remote sensing of Environment, 237, 111582.

    Article  Google Scholar 

  • Hajduch, G. (2018). Masking “no-value” pixels on GRD products generated by the Sentinel-1 ESA IPF. European Space Agency Paris.

    Google Scholar 

  • Haruyama, S., & Shida, K. (2008). Geomorphologic land classification map of the Mekong Delta utilizing JERS-1 SAR images. Hydrological Processes: An International Journal, 22(9), 1373–1381.

    Article  Google Scholar 

  • Kahaki, S. M., Nordin, M. J., Ahmad, N. S., Arzoky, M., Ismail, W. J. N. C., & Applications (2020). Deep convolutional neural network designed for age assessment based on orthopantomography data. 32(13), 9357–9368.

  • Kundzewicz, Z. W. (2008). Flood risk and vulnerability in the changing climate. (p. 39). Annals of Warsaw University of Life Sciences-SGGW.

    Google Scholar 

  • Landuyt, L., Van Wesemael, A., Schumann, G.J.-P., Hostache, R., Verhoest, N. E., & Van Coillie, F. M. (2018). Flood mapping based on synthetic aperture radar: an assessment of established approaches. IEEE Transactions on Geoscience and Remote Sensing, 57(2), 722–739.

    Article  Google Scholar 

  • Lee, J.-S., & Pottier, E. (2017). Polarimetric radar imaging: from basics to applications: CRC press.

  • Li, N., Wang, R., Liu, Y., Du, K., Chen, J., & Deng, Y. (2014). Robust river boundaries extraction of dammed lakes in mountain areas after Wenchuan Earthquake from high resolution SAR images combining local connectivity and ACM. ISPRS journal of photogrammetry and remote sensing, 94, 91–101.

    Article  Google Scholar 

  • Li, Y., Martinis, S., Plank, S., & Ludwig, R. (2018). An automatic change detection approach for rapid flood mapping in Sentinel-1 SAR data. International Journal of Applied Earth Observation and Geoinformation, 73, 123–135.

    Article  Google Scholar 

  • Liang, J., & Liu, D. (2020). A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS journal of photogrammetry and remote sensing, 159, 53–62.

    Article  Google Scholar 

  • Long, S., Fatoyinbo, T. E., & Policelli, F. (2014). Flood extent mapping for Namibia using change detection and thresholding with SAR. Environmental Research Letters, 9(3), 035002.

    Article  Google Scholar 

  • Lu, J., Giustarini, L., Xiong, B., Zhao, L., Jiang, Y., & Kuang, G. (2014). Automated flood detection with improved robustness and efficiency using multi-temporal SAR data. Remote sensing letters, 5(3), 240–248.

    Article  Google Scholar 

  • Maître, H. (2013). Processing of Synthetic Aperture Radar (SAR) images: John Wiley & Sons.

  • Manjusree, P., Kumar, L. P., Bhatt, C. M., Rao, G. S., & Bhanumurthy, V. (2012). Optimization of threshold ranges for rapid flood inundation mapping by evaluating backscatter profiles of high incidence angle SAR images. International Journal of Disaster Risk Science, 3(2), 113–122.

    Article  Google Scholar 

  • Marchi, L., Borga, M., Preciso, E., & Gaume, E. (2010). Characterisation of selected extreme flash floods in Europe and implications for flood risk management. Journal of Hydrology, 394(1–2), 118–133.

    Article  Google Scholar 

  • Martinez, J.-M., & Le Toan, T. (2007). Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data. Remote sensing of Environment, 108(3), 209–223.

    Article  Google Scholar 

  • Martinis, S. (2010). Automatic near real-time flood detection in high resolution X-band synthetic aperture radar satellite data using context-based classification on irregular graphs. lmu,

  • Martinis, S., & Twele, A. (2010). A hierarchical spatio-temporal Markov model for improved flood mapping using multi-temporal X-band SAR data. Remote Sensing, 2(9), 2240–2258.

    Article  Google Scholar 

  • Martinis, S., Twele, A., & Voigt, S. (2009). Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution TerraSAR-X data. Natural Hazards & Earth System Sciences, 9(2).

  • Mason, D. C., Davenport, I. J., Neal, J. C., Schumann, G.J.-P., & Bates, P. D. (2012). Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images. IEEE Transactions on Geoscience and Remote Sensing, 50(8), 3041–3052.

    Article  Google Scholar 

  • Mason, D. C., Giustarini, L., Garcia-Pintado, J., & Cloke, H. L. (2014). Detection of flooded urban areas in high resolution Synthetic Aperture Radar images using double scattering. International Journal of Applied Earth Observation and Geoinformation, 28, 150–159.

    Article  Google Scholar 

  • Matgen, P., Hostache, R., Schumann, G., Pfister, L., Hoffmann, L., & Savenije, H. (2011). Towards an automated SAR-based flood monitoring system: lessons learned from two case studies. Physics and Chemistry of the Earth, Parts A/B/C, 36(7–8), 241–252.

    Article  Google Scholar 

  • Morales-Barquero, L., Lyons, M. B., Phinn, S. R., & Roelfsema, C. M. J. R. s. (2019). Trends in remote sensing accuracy assessment approaches in the context of natural resources. 11(19), 2305.

  • Oliveira, E. R., Disperati, L., Cenci, L., Gomes Pereira, L., & Alves, F. L. J. R. S. (2019). Multi-Index Image Differencing Method (MINDED) for Flood Extent Estimations. 11(11), 1305.

  • Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. J. R. S. o. E. (2014). Good practices for estimating area and assessing accuracy of land change. 148, 42–57.

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on systems, man, and cybernetics, 9(1), 62–66.

    Article  Google Scholar 

  • Ouled Sghaier, M., Hammami, I., Foucher, S., & Lepage, R. (2018). Flood extent mapping from time-series SAR images based on texture analysis and data fusion. Remote Sensing, 10(2), 237.

    Article  Google Scholar 

  • Pan, F., Xi, X., & Wang, C. J. R. S. (2020). A comparative study of water indices and image classification algorithms for mapping inland surface water bodies using Landsat imagery., 12(10), 1611.

    Google Scholar 

  • Park, J.-W., Korosov, A. A., Babiker, M., Sandven, S., & Won, J.-S. (2017). Efficient thermal noise removal for Sentinel-1 TOPSAR cross-polarization channel. IEEE Transactions on Geoscience and Remote Sensing, 56(3), 1555–1565.

    Article  Google Scholar 

  • Penning-Rowsell, E., Floyd, P., Ramsbottom, D., & Surendran, S. (2005). Estimating injury and loss of life in floods: a deterministic framework. Natural Hazards, 36(1–2), 43–64.

    Article  Google Scholar 

  • Pulvirenti, L., Pierdicca, N., Chini, M., & Guerriero, L. (2013). Monitoring flood evolution in vegetated areas using COSMO-SkyMed data: the Tuscany 2009 case study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(4), 1807–1816.

    Article  Google Scholar 

  • Rahman, M. R. (2006). Flood inundation mapping and damage assessment using multi-temporal RADARSAT and IRS 1C LISS III Image. Asian Journal of Geoinformatics, 6(2), 11–21.

    Google Scholar 

  • Rahman, M. R., & Thakur, P. K. (2018). Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: a case study from the Kendrapara District of Orissa State of India. The Egyptian Journal of Remote Sensing and Space Science, 21, S37–S41.

    Article  Google Scholar 

  • Richards, J. A. (2009). Remote sensing with imaging radar (Vol. 1): Springer.

  • Roy, P., Behera, M., & Srivastav, S. (2017). Satellite remote sensing: sensors, applications and techniques. Springer.

    Google Scholar 

  • Safanelli, J. L., Poppiel, R. R., Ruiz, L. F. C., Bonfatti, B. R., Mello, F. A. d. O., Rizzo, R., et al. (2020). Terrain analysis in Google Earth Engine: a method adapted for high-performance global-scale analysis. 9(6), 400.

  • Salameh, E., Frappart, F., Turki, I., & Laignel, B. (2020). Intertidal topography mapping using the waterline method from Sentinel-1 & -2 images: the examples of Arcachon and Veys Bays in France. ISPRS journal of photogrammetry and remote sensing, 163, 98–120.

    Article  Google Scholar 

  • Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic imaging, 13(1), 146–166.

    Article  Google Scholar 

  • Slagter, B., Tsendbazar, N.-E., Vollrath, A., & Reiche, J. (2020). Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: a case study in the St. Lucia wetlands, South Africa. International Journal of Applied Earth Observation and Geoinformation, 86, 102009.

  • Stehman, S. V. J. I. J. o. R. S. (2009). Sampling designs for accuracy assessment of land cover. 30(20), 5243–5272.

  • Stehman, S. V., & Foody, G. M. J. R. S. o. E. (2019). Key issues in rigorous accuracy assessment of land cover products. 231, 111199.

  • Survey, U. J. U. G. (2015). Shuttle radar topography mission (SRTM) 1 Arc‐Second global.

  • Tong, X., Luo, X., Liu, S., Xie, H., Chao, W., Liu, S., et al. (2018). An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery. ISPRS journal of photogrammetry and remote sensing, 136, 144–153.

    Article  Google Scholar 

  • Twele, A., Cao, W., Plank, S., & Martinis, S. (2016). Sentinel-1-based flood mapping: a fully automated processing chain. International Journal of Remote Sensing, 37(13), 2990–3004.

    Article  Google Scholar 

  • Vijay, P. P., & Patil, N. J. J. f. R. (2016). Gray scale image segmentation using OTSU thresholding optimal approach. 2(05).

  • Voigt, S., Martinis, S., Zwenzner, H., Hahmann, T., Twele, A., & Schneiderhan, T. Extraction of flood masks using satellite based very high resolution SAR data for flood management and modeling. In RIMAX Contributions at the 4th International Symposium on Flood Defence (ISFD4), 2009: Deutsches GeoForschungsZentrum GFZ

  • Wunnava, A., Naik, M. K., Panda, R., Jena, B., & Abraham, A. J. A. S. C. (2020). An adaptive Harris hawks optimization technique for two dimensional grey gradient based multilevel image thresholding., 95, 106526.

    Google Scholar 

  • Yariyan, P., Janizadeh, S., Van Phong, T., Nguyen, H. D., Costache, R., Van Le, H., et al. (2020). Improvement of best first decision trees using bagging and dagging ensembles for flood probability mapping., 34(9), 3037–3053.

    Google Scholar 

  • Zeng, Z., Gan, Y., Kettner, A. J., Yang, Q., Zeng, C., Brakenridge, G. R., et al. (2020). Towards high resolution flood monitoring: an integrated methodology using passive microwave brightness temperatures and Sentinel synthetic aperture radar imagery. Journal of Hydrology, 582, 124377.

    Article  Google Scholar 

  • Zhang, W., Hu, B., & Brown, G. S. J. W. (2020). Automatic surface water mapping using polarimetric SAR data for long-term change detection., 12(3), 872.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Google Earth Engine for providing Sentinel-1 images and computation capabilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Attarchi.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The findings of this research provide insights into the exploitation of SAR images in flood mapping based on an automatic thresholding method.

• The automatic thresholding approach is efficient in rapid flood mapping across complex landscapes.

• The exploitation of freely available Sentinel-1 images highlights the application of the presented research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharrami, M., Javanbakht, M. & Attarchi, S. Automatic flood detection using sentinel-1 images on the google earth engine. Environ Monit Assess 193, 248 (2021). https://doi.org/10.1007/s10661-021-09037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09037-7

Keyword

Navigation